Catálogo de Publicaciones de la Administración General del Estado
https://publicacionesoficiales.boe.es/

© Fotografías de la cubierta:
1. Biomasa (Propiedad: IDAE)
2. Lámpara LED (Propiedad: IDAE)
3. Aerogenerador (Propiedad: IDAE)
4. Planta de regasificación Saggas (Propiedad: ENAGAS)
5. Línea de doble circuito de la red de transporte (Propiedad: REE)
6. Recarga de vehículo eléctrico (Propiedad: IDAE)
7. Planta de regasificación BBG (Propiedad: ENAGAS)
8. Regulador (Propiedad: IDAE)
9. Central Nuclear de Cofrentes (Propiedad: Foro Nuclear)
10. Panel Fotovoltaico (Propiedad: IDAE)
ÍNDICE

1. SITUACIÓN Y PERSPECTIVAS INTERNACIONALES ... 7
 1.1. Mercados energéticos internacionales .. 9
 1.2. Normativa de la Unión Europea durante 2016 ... 19

2. DEMANDA DE ENERGÍA EN ESPAÑA ... 27
 2.1. Estructura energética española .. 29
 2.2. Demanda de energía final .. 29
 2.3. Demanda de energía primaria ... 31
 2.4. Producción interior de energía primaria y grado de autoabastecimiento 34

3. SECTOR ELÉCTRICO .. 37
 3.1. Demanda eléctrica ... 39
 3.2. Oferta eléctrica .. 39
 3.3. Evolución de los precios de electricidad y comparación con otros países 40
 3.4. Regulación del sector .. 42
 3.5. Evolución del mercado de producción de la electricidad .. 49

4. SECTOR NUCLEAR .. 51
 4.1. Generación eléctrica de origen nuclear .. 53
 4.2. Fabricación de combustible nuclear ... 53
 4.3. Gestión del combustible nuclear gastado y otros residuos radiactivos 53
 4.4. Fabricación de equipos .. 57
 4.5. Desmantelamiento de instalaciones ... 58
 4.6. I+D .. 60
 4.7. Normativa aprobada y en elaboración .. 63
 4.8. Aplicación de salvaguardias integradas a las instalaciones nucleares españolas 68
 4.9. Protección física de las instalaciones y los materiales nucleares y de las fuentes radiactivas ... 69
 4.10. Actividad de organismos internacionales ... 71

5. SECTOR CARBÓN ... 85
 5.1. Situación actual ... 87
 5.2. Estructura del sector .. 91
 5.3. La política carbonera en el año, en España y en la UE ... 91
 5.4. Actividad del instituto para la reestructuración de la minería del carbón y desarrollo alternativo de las comarcas mineras ... 96

6. INVESTIGACIÓN Y EXPLOTACIÓN INTERIOR DE HIDROCARBUROS 99
 6.1. Investigación de hidrocarburos ... 101
 6.2. Explotación de hidrocarburos .. 103
 6.3. Almacenamiento subterráneo de gas natural ... 104
 6.4. Producción interior de hidrocarburos ... 107
ÍNDICE

7. SECTORES DEL GAS NATURAL Y PRODUCTOS PETROLÍFEROS .. 109
 7.1. Sector del gas natural ... 111
 7.2. Sector de productos derivados del petróleo (hidrocarburos líquidos y GLP) 125
 7.3. Régimen económico de los gases canalizados 132
 7.4. Precios y cotizaciones de crudos y productos petrolíferos 145

8. EFICIENCIA ENERGÉTICA, COGENERACIÓN Y ENERGÍAS RENOVABLES 157
 8.1. Eficiencia energética .. 159
 8.1.1. Evolución del consumo y la intensidad en España. Comparativa internacional 159
 8.1.2. Análisis sectorial de la eficiencia energética .. 165
 8.1.3. Sector Industria .. 166
 8.1.4. Sector Transporte ... 172
 8.1.5. Sector Usos Diversos ... 178
 8.1.6. Sector Residencial .. 179
 8.1.7. Sector Servicios .. 184
 8.1.8. Sector Agricultura y Pesca ... 188
 8.2. Cogeneración ... 190
 8.3. Energías renovables ... 199
 8.3.1. Las energías renovables en 2016 ... 199
 8.3.2. Progresos registrados en el fomento y la utilización de la energía procedente de fuentes renovables .. 204
 8.3.3. Otros aspectos relevantes ... 206
 8.4. Desarrollo normativo ... 208
 8.4.1. Producción Eléctrica con Renovables, Cogeneración y Residuos 208
 8.4.2. Eficiencia Energética .. 209
 8.4.3. Energías Renovables .. 218

9. ENERGÍA Y MEDIO AMBIENTE ... 221
 9.1. Ámbito internacional .. 223
 9.2. Unión Europea .. 226
 9.3. Ámbito nacional .. 240

10. INVESTIGACIÓN Y DESARROLLO EN EL SECTOR ENERGÉTICO 253
 10.1. Contexto europeo, SET Plan .. 255
 10.2. Área: energías renovables y ahorro energético ... 276
 10.3. Área: fisión nuclear .. 280
 10.4. Área: fusión nuclear ... 282
 10.5. Área: valorización energética de combustibles y residuos 284
 10.6. Área: efectos ambientales de la energía ... 285
 10.7. Área: efectos de las radiaciones ionizantes .. 288
 10.8. Área: estudios de sistemas energéticos y medioambientales 290
ÍNDICE

10.9. Centro Nacional Del Hidrógeno (CNH2) ... 300
10.10. Actividades y proyectos de I+D destacados del CNH2 en 2016 304
11. REDES DE TRANSPORTE DE ENERGÍA ... 309
 11.1. Redes eléctricas. Realizaciones en 2016 ... 311
 11.2. Redes gasistas. Realizaciones en 2016 ... 324
 11.3. Almacenamiento de reservas estratégicas de productos petrolíferos 327
 11.4. Planificación de las infraestructuras de transporte de energía 327
ANEXO ESTADÍSTICO Y METODOLOGÍA ... 335
ANEXO ESTADÍSTICO ... 337
1. SITUACIÓN Y PERSPECTIVAS INTERNACIONALES
1.1. MERCADOS ENERGÉTICOS INTERNACIONALES

En este primer capítulo se explican los aspectos más relevantes de la energía y los mercados energéticos a nivel global desde el punto de vista de los organismos internacionales, así como las perspectivas futuras, de acuerdo con los análisis efectuados por la Agencia Internacional de la Energía (AIE) y otras instituciones y Organismos internacionales. También se incluyen las novedades respecto de otros temas relacionados con la energía: la Unión Por el Mediterráneo (UPM) y la COP 22 sobre cambio climático y las relativas a la legislación de la Unión Europea (UE) en materia de energía.

1.1.1. Agencia Internacional de la Energía

- La transición energética y las repercusiones respecto al cambio climático. La entrada en vigor del acuerdo de París

Tras el éxito de la COP 21 y la entrada en vigor del Acuerdo de París en noviembre de 2016, las futuras acciones van a impactar en la transición energética hacia economías bajas en carbono. Ya hay señales de que la transición energética mundial está en marcha, pero todavía no al ritmo necesario para invertir de manera eficaz la tendencia de emisiones crecientes de CO₂. Los países están en vías de lograr, y de superar en algunos casos, muchos de los objetivos fijados en sus compromisos del Acuerdo de París, los denominados Intended Nationally Determined Contributions (INDC’s), sin embargo, aunque esto es suficiente para reducir el aumento previsto de emisiones mundiales de CO₂ relacionadas con la energía, no basta para limitar el calentamiento a menos de 2 °C.

El denominado *New Policies Scenario*, ya contemplado en anteriores WEO-2016, se ha actualizado por medio del Acuerdo de París, reflejando la manera en que los gobiernos desarrollarán, individual o colectivamente, sus sectores de energía en las próximas décadas. Su punto de partida son las políticas y medidas que ya están en marcha, pero también considera, en todo o en parte, los objetivos, metas e intenciones que se han anunciado, aunque éstos todavía tienen que ser reafirmados en la legislación propia de cada país o región.

En el WEO-2016 se han desarrollado los denominados «Decarbonisation Scenarios», tanto el ya comentado previamente, 450 Scenario, que tiene el objetivo de limitar el aumento de la temperatura media global en 2100 a 2 °C sobre niveles preindustriales, y una primera evaluación (pero no todavía en el detalle necesario para un escenario completo) de dos vías más ambiciosas de reducción de emisiones, derivada del Acuerdo de París en los que se pretende limitar el calentamiento «bien por debajo de 2 °C» y a 1,5 °C respectivamente.

De acuerdo con las estimaciones de la AIE, las emisiones globales de CO₂ relacionadas con la energía se estancaron por tercer año consecutivo.
La energía en España 2016: SITUACIÓN Y PERSPECTIVAS INTERNACIONALES

El sector eléctrico es el centro de atención para una economía baja en carbono en el New Policies Scenario, casi el 60% de toda la nueva potencia de generación en 2040 proviene de las renovables y, para ese mismo año, la mayor parte de esta generación eléctrica será competitiva sin subvención alguna. El rápido desarrollo de la producción eléctrica de fuentes renovables conlleva costes más bajos: de aquí a 2040, se prevé un recorte adicional del 40% al 70% en el coste medio de la energía solar Fotovoltaica (FV) y del 10% al 25% en el de la energía eólica onshore.

Las subvenciones a las energías renovables giran actualmente en torno a los 150 000 millones de USD, de los cuales un 80% va destinado al sector eléctrico, un 18% al transporte y en torno a un 1% a los sistemas de calefacción. Con la reducción de costes y el aumento previsto de los precios de la electricidad para el usuario final, de aquí a la década de 2030, las subvenciones mundiales a las renovables siguen una tendencia decreciente a partir de un punto máximo de 240 000 millones de USD.

En el Escenario 450, se prevé que casi el 60% de la electricidad generada en 2040 provenga de energías renovables y la mitad de ese porcentaje, de las energías eólica y solar FV. El sector eléctrico está prácticamente libre de emisiones de CO₂ en este escenario. En relación a los cuatro mercados eléctricos más grandes (China, Estados Unidos, la Unión Europea y la India), la Unión Europea consigue que las renovables se conviertan en la principal fuente de generación hacia 2030; esto mismo ocurre en los otros tres países hacia 2035.

La transición energética requiere una reasignación importante del capital de inversión destinado al sector energético. El reparto de los 40.000 millones de USD de inversiones acumuladas en suministro energético en el Escenario 450 incide menos en los combustibles fósiles, centrándose más en las renovables y en otras inversiones de bajas emisiones de CO₂, como la tecnología nuclear y la captura y almacenamiento de CO₂. Para 2040, la proporción destinada a los combustibles fósiles desciende a un tercio. Además, se necesitan 35.000 millones de USD para introducir mejoras en eficiencia energética.

Cuanto más ambicioso sea el objetivo de limitar el calentamiento global, más pronto se al-
canzará ese punto de cero emisiones netas. La transformación que se requiere para tener una posibilidad razonable de permanecer dentro del objetivo de 1,5°C es total. El cumplimiento de este objetivo, exigiría el logro de cero emisiones netas en algún momento entre 2040 y 2060 (incluso si las tecnologías de emisiones negativas pueden aplicarse a gran escala) y, además, una reducción drástica a corto plazo de las emisiones de CO₂ del sector energético mediante todas las opciones tecnológicas, sociales y regulatorias conocidas.

Previsiones por sectores:

En el escenario principal del WEO-2016 (*New Policies Scenario*) se prevé un aumento del 30% de la demanda energética mundial hasta 2040 e implica un aumento del consumo de todos los combustibles modernos.

En términos generales, la energía renovable experimenta, con diferencia, el crecimiento más rápido entre las diversas fuentes de energía. Esto es debido principalmente a la transformación del sector eléctrico, que ha centrado la atención en un nuevo debate sobre el diseño del mercado de la electricidad y la seguridad eléctrica en el cual las renovables tienen un papel cada vez más importante. No obstante, las preocupaciones tradicionales por la seguridad energética no han desaparecido.

El gas natural logra el mejor resultado entre los combustibles fósiles, viendo aumentar su consumo en un 50% con una cuota de GNL (Gas Natural Licuado) que superaría a la de los gasoductos y creciendo el comercio mundial de gas de larga distancia más del doble en relación al año 2000. En un mercado ya bien abastecido, la IEA indica que en este sector se está produciendo un cambio hacia mercados más competitivos, en términos contractuales y de precios. La demanda mundial de petróleo seguirá creciendo hasta 2040, alcanzando los 103 millones de barriles diarios de petróleo (mbp/d) en ese año. La causa principal de este aumento es la falta de alternativas al petróleo en el transporte de mercancías por carretera, la aviación y la petroquímica. Sin embargo, la demanda de petróleo de los vehículos de pasajeros disminuirá, a pesar de que el número de vehículos se duplicará en el próximo cuarto de siglo, debido principalmente a mejoras en la eficiencia, pero también a los biocombustibles y al aumento del parque de automóviles eléctricos.

El uso del carbón se ve afectado por problemas medioambientales y, tras la rápida expansión de los últimos años, su crecimiento esencialmente se estanca. China va a reducir su demanda de carbón debido principalmente a la contaminación del aire por la minería y la producción eléctrica), así como a la necesidad de diversificar su mix energético.

El principal actor en el aumento de la producción nuclear es China, mientras la demanda total en los países de la OCDE va en descenso.

El consumo energético mundial sigue desplazándose hacia lugares en plena fase de industrialización y urbanización como la India, el Sudeste Asiático y China, así como hacia de-
• China e India siguen estando en el centro de la demanda energética mundial

La AIE estima que dentro de 25 años China será el mayor consumidor de petróleo del mundo (15,1 millones de barriles diarios), superando a EEUU, que reducirá en 4,9 millones de barriles diarios su consumo actual de crudo, hasta 13,1 millones de barriles diarios.

No obstante, el país que más incrementará su demanda de crudo de cara a 2040 será India, que consumirá, según las previsiones de la AIE, 9,9 millones de barriles diarios, frente a los 2,3 millones actuales.

• El papel de la eficiencia energética

Se ha mencionado previamente que en el escenario 450 es preciso cambiar la tendencia de las emisiones de CO₂ y mejorar eficiencia energética para alcanzar el objetivo de que el aumento de la temperatura sea inferior a los 2 °C en el año 2100, respecto de los niveles preindustriales.

La mayor reducción de las emisiones se relaciona con acciones en el sector eléctrico: desarrollo de las energías renovables, de la energía nuclear y la captura el almacenamiento de CO₂, entre otras. No obstante, en lo que respecta a la eficiencia energética, en el WEO-2016 se pone de relieve el potencial de mejoras adicionales en el rendimiento de sistemas eléctricos. Los cuales representan más de la mitad del consumo eléctrico actual en toda una serie de aplicaciones de uso final (por ejemplo: ventiladores, compresores, bombas, vehículos, refrigeradores). Solamente en el sector industrial, la inversión acumulada adicional de unos 300.000 millones de USD en el Escenario 450 contribuye a reducir en aproximadamente un 5% la demanda mundial de electricidad para 2040 y evita una inversión de 450.000 millones de USD en generación eléctrica.

Conseguir este ahorro energético requiere un enfoque que abarque no solo una reglamentación estricta para motores y dispositivos accionados por motor, sino también una adopción más amplia de mandos de regulación de velocidad y la implementación por parte de operadores de otras medidas que realcen la eficiencia del sistema, como el mantenimiento predictivo.

• Papel de los Vehículos eléctricos

La electricidad registra una proporción cada vez mayor del crecimiento del consumo energético final. El incremento de la aplicación de la electricidad al transporte es una tendencia que se va perfilando como una realidad. Aparecen más modelos en el mercado y la diferencia de precios con respecto a los vehículos convencionales sigue estrechándose.

El número de coches eléctricos en el mundo alcanzó los 1,3 millones en 2015, casi el doble del nivel registrado en 2014. En el New Policies Scenario esta cifra asciende a más de 30 millones en 2025 y sobrepasa los 150 millones en 2040, reduciéndose la demanda de petróleo en apro-
el GNL, cuya proporción global en el comercio de gas a larga distancia crece desde un 42% en 2014 a un 53% en 2040. Pero la incertidumbre en cuanto a la dirección de esta transición comercial podría retrasar decisiones sobre proyectos nuevos de exploración y producción, y proyectos de transporte.

1.1.3. Temas actuales de energía que se han destacado últimamente en la situación política mundial

- **Empieza a vislumbrarse un mercado del gas verdaderamente mundial**

Un mercado mundial más flexible, ligado a una duplicación del comercio de gas natural licuado (GNL), refuerza el papel del gas en el mix energético mundial.

El consumo de gas aumenta en casi todas partes, siendo China y Oriente Medio las mayores fuentes de crecimiento del consumo de gas. No obstante, la barrera principal son las inversiones en infraestructuras (130.000 millones de metros cúbicos de capacidad de licuefacción en construcción, la mayoría de ellos en Estados Unidos y Australia).

El cambio en el mercado de GNL se debe a la disponibilidad creciente de cargamentos de GNL desde EEUU y la aparición en la década de 2020 de nuevos exportadores, concretamente en África Oriental, así como a la diversidad aportada al suministro mundial gracias a la expansión continua, aunque desigual, de la revolución del gas no convencional. Además, aparecen mercados nuevos y más pequeños para el GNL, cuya proporción global en el comercio de gas a larga distancia crece desde un 42% en 2014 a un 53% en 2040. Pero la incertidumbre en cuanto a la dirección de esta transición comercial podría retrasar decisiones sobre proyectos nuevos de exploración y producción, y proyectos de transporte.

- **Los precios del petróleo y el nuevo acuerdo de la OPEP de reducir la producción de petróleo**

En 2016 con el nuevo acuerdo de reducción de la producción de petróleo, ha vuelto el mercado de petróleo gestionado. La Decisión de la OPEP y de 11 países no-OPEP de cortar la producción del primer semestre de 2017 ha provocado el aumento de los precios del petróleo. Este nuevo acuerdo es la base del informe de la AIE 2017 sobre el mercado del petróleo publicado el 6 de marzo de 2017 que abarca hasta el año 2022.

En los últimos años:

- Los ingresos por exportaciones en los países OPEP han caído de 1,2 billones de USD en 2012 a 450.000 millones de USD en 2016.
- Las inversiones en exploración-producción (upstream) han caído en un 25% en el año 2016 respecto al 2015.
El precio del barril de petróleo ha caído de los 100 USD que costaba en el periodo 2011-2014 a 30 USD en el 2016.

Los costes exploración-producción (upstream) cayeron un 16% en el año 2016.

El petróleo de baja permeabilidad (light tight oil, LTO) cayó en un 30% en 2015 y un 22% en 2016.

En cuanto a la oferta de petróleo, por un lado, destaca el papel de los nuevos suministradores. La oferta de petróleo está aumentando considerablemente en EEUU (1,5 mb/d), Canadá (0,8 mb/d) y Brasil (1 mb/d). Canadá acaba de superar los 5 mb/d por primera vez.

Por otro lado, en los países OPEP la mayor parte del nuevo suministro vendrá de productores de bajo coste de Medio oriente como Irán, Iraq y los Emiratos Árabes (0,4 mb/d cada uno). En cambio, la producción de Nigeria, Argelia y Venezuela bajará. En total se espera pasar de una potencia instalada de producción de 36 mb/d en 2014 a 38 mb/d en 2022.

En Rusia, se espera que la producción se mantenga estable en los próximos 5 años, en torno a los 11,3 mb/d. Un rublo débil y menores impuestos han permitido a las compañías petroleras mantener el gasto durante la recesión.

En cuanto a la demanda:

En 2015 y 2016 la demanda mundial ha aumentado en 2 mb/d y 1,5 mb/d respectivamente.

Para los próximos 5 años se espera que la demanda aumente en 1,2 mb/d en 2017 hasta los 7,5 mb/d en 2022.

Dentro de este panorama, el mercado asiático (China e India) será el que experimente un mayor crecimiento de la demanda, con lo que también se espera un aumento de su potencia instalada de refino. El mercado chino podría entrar en situación de estrés por sus dificultades para mantener sus actuales niveles de producción, con importaciones crecientes (hasta los 9,5 mb/d en 2022 –los niveles de EEUU hace 10 años, antes del aumento en la producción debido a los hidrocarburos no convencionales–).

En la zona OPEP el aumento de la demanda interna reduce sus posibilidades de exportación al mercado asiático, con un déficit estimado de 4 mb/d que deberán de ser suministrados desde otros países (Angola, Nigeria, Brasil, EEUU…).

En Rusia el aumento en la demanda de productos petrolíferos se recuperó en 2016 tras unos años de bajos precios, pero, teniendo en cuenta las previsiones de contracción económica, se espera un menor crecimiento de la demanda para el periodo 2018-2022, bajando de 95 miles de barriles diarios (kb/d) en 2017 a 35 kb/d en 2022.

En Europa, en cambio, se espera una tendencia a la baja en la demanda para los próximos 5 años, con un descenso de la demanda de productos petrolíferos de unos 570 kb/d entre 2016-2022 con excepciones en Turquía y Polonia.
1.1.4. Cambio climático y energía: La COP 22 de Marrakech

1.1.4.1 Antecedentes

Las negociaciones de la COP 21 de París en diciembre de 2015 iban orientadas a un compromiso para no subir más de 2 ºC la temperatura global en 2100. Tras el éxito de la COP 21 las futuras acciones van a impactar en la transición energética hacia economías bajas en carbono. Ya hay señales de que la transición energética mundial está en marcha, pero todavía no al ritmo necesario para invertir de manera eficaz la tendencia de emisiones crecientes de CO₂. Según los primeros resultados a partir de los compromisos de los países firmantes, Intended Nationally Determined Contributions (INDC’s), sólo se podría limitar el crecimiento de las temperaturas hasta los 2,7 ºC, por tanto, de manera insuficiente respecto del objetivo de los 2 ºC.

1.1.4.2 La COP 22 de MARRAKECH

Del 7 al 18 de noviembre de 2016 tuvieron lugar en Marrakech las siguientes sesiones en el marco de la Convención Marco de Naciones Unidas para el cambio climático:

• la Vigésimosegunda Conferencia de las Partes de la CMNUCC (COP22),

• la Duodécima Conferencia de las Partes en calidad de Reunión de las Partes del Protocolo de Kioto (COP/RdP 12),

• la 45 reunión de los Órganos Subsidiarios SBI y SBSTA,

• la segunda parte de la primera sesión del Grupo del Acuerdo de París (APA)

• la primera parte de la primera sesión de la Conferencia de las Partes del Acuerdo de París (CMA1).

Aparte de las sesiones de trabajo de los órganos de la Convención, se han celebrado numerosos eventos en el marco de la Agenda Global de Acción por el Clima. La cumbre contó con la asistencia de 22.500 delegados.

El principal objetivo de esta COP 22 era la elaboración de una hoja de ruta respetando los compromisos existentes. Por una parte, las negociaciones se centraron en avanzar en las reglas para el cumplimiento del Acuerdo de París y, por otra, en la Agenda Global de Acción por el Clima, se centraron en la participación de agentes no gubernamentales.

El Acuerdo de París entró en vigor el 4 de octubre de 2016, fecha en la que se cumplieron las dos condiciones necesarias para que el entrara en vigor, al ratificarlo 55 partes que suponían más del 55% de las emisiones globales de gases de efecto invernadero. Tras la aprobación del Acuerdo de París, queda pendiente la elaboración de las reglas de funcionamiento del mismo, que incluyen el formato y contenido de las contribuciones nacionales, el marco de transparencia, el nuevo mecanismo, la transferencia tecnológica, la contabilización de emisiones, la revisión de compromisos, el esquema de financiación y su seguimiento, etc. El Acuerdo de París asigna el desarrollo de estas reglas a los Órganos subsidiarios (SBI y SBSTA) y al Grupo Ad hoc del Acuerdo de París (APA) estableciendo que este conjunto de reglas (Paris Rule
LA ENERGÍA EN ESPAÑA 2016
SITUACIÓN Y PERSPECTIVAS INTERNACIONALES

Book) debían elaborarse en los próximos años y ser aprobadas en la primera sesión de la CMA, prevista en un principio para 2020.

En esta COP se ha constituido la Conferencia de las Partes del Acuerdo de (CMA), órgano que gobernará el Acuerdo de París. Se deja un período de dos años para desarrollar las reglas y para que tengan tiempo de ratificar el Acuerdo aquellos países que no han tenido un tiempo de hacerlo. En 2017 se celebrará una sesión conjunta de la COP23/CMA1.2 para evaluar el progreso de los trabajos (a fecha de mayo de 2017 son ya 145 países los que han ratificado el Acuerdo).

En Marrakech se ha conseguido avanzar en los calendarios de trabajo de cada tarea y asignar tareas que quedaban pendientes. Se ha aprobado un plazo de 2 años, hasta la COP24 de 2018, para desarrollar estas reglas, y una revisión de los trabajos en 2017 con una celebración conjunta de la COP23/CMA1.2.

Resultados de la COP:

En total se aprobaron 25 decisiones por parte de la COP, 8 por la MdP y 2 por la CMA1.1, destacando, parte de los trabajos relativos a las reglas del Acuerdo de París, lo siguiente:

- Tecnología: se acordó reforzar el Mecanismo Técnológico existente y sus sinergias con los trabajos desarrollados por el Comité Ejecutivo de Tecnología y el Centro y Red de centros tecnológicos (CTCN). Se aprobó además una decisión sobre los puntos de unión entre el mecanismo tecnológico y el mecanismo financiero. Destaca además la necesaria participación del sector privado. Canadá, Dinamarca, la Unión Europea, Alemania, Italia, Japón, Corea, Suiza y EEUU anunciaron una aportación de más de 23 millones de dólares al CTCN.

- Inclusión de la Captura y Almacenamiento de Carbono (CCS) en los Mecanismos de Desarrollo Limpio (MDL): se acordó finalizar las discusiones sobre la elegibilidad de este tipo de proyectos y se reconoce el papel de esta tecnología en la reducción de emisiones de CO₂, pero se hace notar que no ha habido ningún proyecto hasta la fecha por lo que se decide concluir este tema.

- En la decisión sobre el MDL, se aprobó el informe anual de la junta Ejecutiva y se invitó a las Partes a continuar cancelando voluntariamente sus Reducciones Certificadas de Emisiones (RCEs).

- Se ha aprobado un trabajo de 5 años para el Mecanismo Internacional de Varsovia sobre pérdidas y daños.

- Financiación a largo plazo: los países desarrollados han acordado un ahoja de ruta sobre cómo movilizar los 100 000 millones de dólares anuales para 2020 antes de la cumbre, y en Marrakech se aprobó el informe del Comité de Financiación. Por otra parte se va a trabajar durante los próximos dos años en la formulación

1 http://unfccc.int/2860.php

de las necesidades identificadas en los procesos dirigidos por los propios países y en la plasma-
ción de dichas necesidades en proyectos, contando con la participación del sector privado.

- Fondo Verde para el clima: se aprobó el informe anual que recoge la actividad del fondo, que hasta la fecha ha aprobado 1.170 millones de dóla-
res para 27 proyectos y programas en 39 países.

1.1.5. IRENA

Según el informe la Agencia Internacional de Energía Renovable (IRENA), 2016 ha sido el mejor año de la historia en nuevas instalaciones de energías renovables en el mundo. La generación mediante tecnologías renovables aumentó en 161 GW. Este crecimiento continúa la tendencia de crecimiento existente desde el año 2009 de aproximadamente 8-9% anual de la potencia instalada, con lo que se alcanzaron los 2.006 GW.

En cuanto a las tecnologías, la energía solar obtuvo el primer lugar, con un aumento de la po-
tencia instalada de 71 GW (+32%), seguido por la energía eólica con un aumento de 51 GW (+12%). La potencia instalada de energía hidroeléctrica y la bioenergía aumentaron 30 GW (+3%) y 9 GW (+9%), respectivamente. La energía geotérmica aumentó en poco menos de 1 GW.

Por regiones, Asia fue la región de más rápido creci-
miento, con un aumento del 13,1% sobre el año an-
terior, y supuso el 58% de las nuevas instalaciones de energías renovables en todo el mundo. También fue el referente por crecimiento en energía solar,
con un total de 50 GW de nueva potencia instalada, cantidad a la que contribuyó de forma decisiva Chi-
na con sus 34 GW. La potencia instalada combina-
da del continente añadida en 2016 fue de 139 GW.

América del norte alcanzó a Europa en expansión de potencia instalada, con un aumento de 24 GW (+7.8%) en comparación con un aumento de 21 GW (+4.4%) en Europa que ha tenido un creci-
miento de la potencia instalada tenue, con más de la mitad de los países europeos con poca o ninguna extensión en 2016. El otro acontecimiento notable fue la instalación de 4.1 GW de nueva potencia insta-
alada renovable en África, dándole segundo lugar en crecimiento de la potencia instalada en el 2016.

Tal y como se ha expuesto previamente, la poten-
cia global instalada de generación por fuentes de energía renovable a finales de 2016 ascendió a 2.006 GW. La energía hidroeléctrica sigue siendo, con gran diferencia, la primera tecnología a nivel mundial, con una potencia instalada de 1.243 GW, con el 75% de sus instalaciones por encima de los 10 MW. En segundo lugar figura la eólica, con 466 GW, en tercero, la energía solar, con 296 GW, y cierran la clasificación la bioenergía, con 109 GW, y la geotérmica con 12 GW, así como cerca de 500 MW de energías marinas (mareas, olas).

Con las nuevas instalaciones, la clasificación mun-
dial por potencia instalada de energía renovable está encabezada por China, con un total de 545 GW, seguida de Estados Unidos, con 215 GW, y Bra-
sil, con 122 GW. El top 10 se completa con Alemania (106 GW), Canadá (96 GW), India (91 GW), Japón (72 GW), Rusia (51,7 GW), Italia (51,4 GW) y, por últi-
timo, España, que con 48 GW cierra la clasificación.
IRENA, hay razones para el optimismo porque cada vez hay más inversores institucionales apostando por las energías renovables. La aparición de nuevos instrumentos de mercado (Green Bonds) y modelos de negocio están aportando nuevas posibilidades de financiar proyectos de renovables, en concreto, el leasing se está imponiendo como fórmula para la financiación de proyectos.

Por último, otro factor determinante en este avance de las renovables hacia la transformación del sector energético está siendo el desarrollo tecnológico y la constante reducción de costes que han potenciado el crecimiento del mercado. Se espera que la energía fotovoltaica tenga el mayor avance en términos de nueva potencia instalada y producción. En esta carrera tecnológica también tiene mucha importancia el desarrollo del almacenamiento para un potencial mayor desarrollo de la generación renovable intermitente.

1.1.6. Grupo de los 20 (G20)

Las cuestiones relativas a la agenda energética se discuten en el Grupo de Trabajo para la Sostenibilidad Energética (ESWG) en el que España participa de forma activa. Durante la presidencia China de 2016, se abordaron como prioridades de la agenda energética el acceso universal a la energía, la contribución el despliegue de las energías renovables y la eficiencia energética. En este sentido, y como resultado de las discusiones en el ESWG durante la reunión de Ministros de Energía celebrada en Beijing los días 29-30 de junio de 2017 se aprobó el Comunicado de Ministros de Beijing, centrado en la necesidad
de afrontar los desafíos del sector energético y avanzar en una transición sostenible de los sistemas energéticos.

Además, sobre la base del Comunicado, se adoptaron, como documentos principales, el Programa Líder G20 para la Eficiencia Energética, mejorando el acceso a la energía en la región Asia Pacífico, y el Programa G20 Voluntario sobre Energía Renovable.

1.1.7. Unión por el Mediterráneo (UpM)

En el año 2016 se celebraron tres reuniones ministeriales de la UpM sobre cooperación y planificación regional (Jordania, junio de 2016), empleo (Jordania, septiembre de 2016) y energía (Italia, diciembre de 2016). En la Conferencia Ministerial de Italia (1/12/2016) los ministros reconocieron la necesidad de intensificar la cooperación regional para asegurar un suministro seguro, asequible y sostenible de la energía como uno de los fundamentos de una región de Euro-Mediterráneo estable y próspera. En la Conferencia se aprobaron tres nuevas plataformas energéticas:

- Gas Platform.
- Regional Electricity Market Platform.

El objetivo de las plataformas es organizar y respaldar el diálogo entre los miembros de la UpM, instituciones financieras, expertos, organizaciones regionales y la industria. Los Ministros de Asuntos Exteriores de los Estados miembros de la UpM adoptaron el mes de enero de 2017 una nueva hoja de ruta que lleva por título »La Unión por el Mediterráneo, una organización orientada a la acción con una ambición común».

La UpM y el Banco Europeo de reconstrucción y desarrollo iniciaron un programa para estimular el crecimiento de los mercados privados para las energías renovables en Egipto, Jordania, Marruecos y Túnez en la COP22. El SEMed Private Renewable Energy Framework (SPREF) pretende ayudar a desligar a la región de sus dependencias de hidrocarburos importados. Dotado de una financiación inicial de 227,5 millones de euros, el marco pretende movilizar una inversión adicional de otros organismos de hasta 834 millones de euros. Además, irá acompañado de asesoramiento técnico para promover proyectos de energías renovables en la región.

1.2. NORMATIVA DE LA UNIÓN EUROPEA DURANTE 2016

1.2.1. Normativa en materia de energía

Las siguientes propuestas legislativas han sido debatidas o presentadas a lo largo de 2016:

Propuesta de Reglamento de Etiquetado Energético

Esta propuesta legislativa ha sido presentada por la Comisión Europea dentro del paquete de verano de la Unión energética de 15 de julio de 2015. Sigue el procedimiento legislativo ordinario. Se
La necesidad de esta nueva regulación se debe a la necesidad de actualizar el sistema de etiquetado de determinados electrodomésticos que había quedado obsoleto. Se considera que la actual Directiva necesita ser revisada para poder tener una única escala de etiquetado energético desde la clase «A» a la «G» y una base de datos digital para los nuevos productos energéticamente eficientes. Además, legisla a través de un Reglamento europeo, de directa aplicación en todos los Estados miembros, en lugar de mediante una Directiva.

Propuesta de Reglamento de Seguridad de Suministro de Gas

La Propuesta de Reglamento del Parlamento Europeo y del Consejo sobre medidas para garantizar la seguridad de suministro de gas y por el que se deroga el Reglamento 994/2010/UE fue presentada el 16 de febrero de 2016 dentro del «paquete de seguridad de suministro» de la Unión energética.

Es una revisión del Reglamento 994/2010/UE de seguridad de suministro de gas con el objeto de mejorar la respuesta ante crisis gasistas y reforzar la coordinación entre EEMM en caso de interrupción del suministro de gas, ya que se habían evidenciado importantes deficiencias durante los tests de estrés realizados por la Comisión Europea durante 2014. La propuesta sigue el procedimiento legislativo ordinario y ha sido debatida en el seno del Consejo y del Parlamento Europeo durante 2016. Se espera su aprobación en 2017.

Decision sobre el Intercambio de Información con respecto a los Acuerdos Intergubernamentales y los instrumentos no vinculantes entre los Estados miembros y terceros países

La Comisión presentó el 16 de febrero de 2016 una propuesta de Decisión del Parlamento Europeo y del Consejo relativa al establecimiento de un mecanismo de intercambio de información con respecto a los acuerdos intergubernamentales y los instrumentos no vinculantes entre los Estados miembros y terceros países en el sector de la energía y por la que se deroga la Decisión nº 994/2012/UE. La propuesta que se ha tramitado por el procedimiento legislativo ordinario busca alcanzar dos objetivos:

1. Asegurar la conformidad de los acuerdos intergubernamentales con el Derecho de la UE para garantizar el buen funcionamiento del mercado interior y mejorar la seguridad energética de la UE.

2. Aumentar la transparencia de los acuerdos intergubernamentales para mejorar la relación coste-eficacia del abastecimiento de energía de la UE y la solidaridad entre los Estados miembros.

La propuesta ha sido debatida en el seno del Consejo y del parlamento Europeo durante 2016.
El paquete legislativo que se presentó persigue reducir al menos un 40% las emisiones contaminantes respecto a 1990, elevar la cuota de renovables por encima del 27% para 2030 y mejorar en un 30% de la eficiencia energética para el mismo horizonte, sin considerar un reparto específico por países, además de seguir estableciendo medidas para el desarrollo del mercado interior europeo de la energía. Se movilizarán 177 billones de euros anuales de inversión pública a partir de 2021, generará un incremento del PIB del 1% durante la próxima década, se reducirán la factura energética en 30 billones de euros anuales y generará un ahorro acumulado de 300 billones de euros en 2030.

El Paquete de Invierno incluye las siguientes propuestas legislativas:

- **Propuesta de Reglamento de Gobernanza de la Unión Energética** – Este Reglamento establece un mecanismo de gobernanza con objeto de aplicar estrategias y medidas diseñadas para cumplir los objetivos y metas de la Unión de la Energía y, en particular, en lo que respecta al primer período decenal de 2021 a 2030, las metas de la UE para 2030 en materia de energía y clima, así como garantizar la coherencia, comparabilidad y transparencia de la información presentada por la Unión y sus Estados miembros a la Secretaría de la CMNUCC y del Acuerdo de París. El mecanismo de gobernanza se basará en los planes nacionales integrados de energía y clima que abarcarán periodos decenales, con inicio en el período de 2021 a 2030, los informes de situación nacionales integrados de energía y clima correspondientes...
elaborados por los Estados miembros, y las disposiciones de seguimiento integrado por parte de la Comisión Europea. El Reglamento definirá un proceso iterativo estructurado entre la Comisión y los Estados miembros con vistas a la finalización de los planes nacionales y su posterior aplicación, que incluirá la cooperación regional. Se aplicará a las cinco dimensiones de la Unión de la Energía.

• **Propuesta de Directiva de Eficiencia Energética** – Establece un marco común de medidas para el fomento de la eficiencia energética dentro de la Unión Europea a fin de asegurar la consecución de los objetivos principales de eficiencia energética de la Unión de un 20% de ahorro para 2020, y sus objetivos principales vinculantes de eficiencia energética de un 30% para 2030, y prepara el camino para mejoras ulteriores de eficiencia energética más allá de esos años. Establece normas destinadas a eliminar barreras en el mercado de la energía y a superar deficiencias del mercado que obstaculizan la eficiencia en el abastecimiento y el consumo de energía, y dispone el establecimiento de contribuciones y objetivos orientativos nacionales de eficiencia energética para 2020 y 2030.

• **Propuesta de Directiva de Eficiencia Energética de Edificios** – Esta Directiva revisa la legislación sobre eficiencia energética mediante una nueva evaluación del objetivo de eficiencia energética de la UE para 2030, en respuesta a la petición del Consejo Europeo en 2014 y una revisión de los artículos fundamentales de la Directiva relativa a la eficiencia energética y de la Directiva relativa a la eficiencia energética de los edificios.

• **Propuesta de Directiva de Renovables** – Esta Directiva establece un marco común para el fomento de la energía procedente de fuentes renovables. Fija un objetivo vinculante para la UE en relación con la cuota de energía procedente de fuentes renovables en el consumo final bruto de energía en 2030. Establece también normas relativas a las ayudas financieras a la electricidad obtenida de fuentes renovables, el autoconsumo de electricidad renovable, y el uso de energías renovables en los sectores de la calefacción y la refrigeración y del transporte, la cooperación regional entre Estados miembros y con terceros países, las garantías de origen, los procedimientos administrativos, la información y la formación. Define criterios de sostenibilidad y de reducción de las emisiones de gases de efecto invernadero para los biocarburantes, y biolíquidos y combustibles de biomasa.

• **Propuesta de Directiva de Electricidad** – La Directiva establece normas comunes en materia de generación, transporte, distribución, almacenamiento y suministro de electricidad, así como normas relativas a la protección de los consumidores, con vistas a la creación de mercados de la electricidad competitivos realmente integrados, centrados en el consumidor y flexibles de la electricidad en la Unión. Aprovechando las ventajas de un mercado integrado, la Directiva pretende garantizar unos precios de la energía asequibles para los consumidores, un grado elevado de seguridad de suministro y una suave transición hacia un sistema...
energético sin emisiones de carbono. Define las normas fundamentales relativas a la organización y funcionamiento del sector europeo de la electricidad, en particular normas sobre la capacitación y la protección de los consumidores, sobre el acceso abierto al mercado integrado, sobre el acceso de terceras partes a las infraestructuras de transporte y distribución, normas en materia de separación y normas aplicables a los reguladores nacionales independientes de la energía.

- **Propuesta de Reglamento de Electricidad** – El objetivo del Reglamento es establecer los principios fundamentales para el funcionamiento correcto y la integración de los mercados de la electricidad que permitan un acceso al mercado no discriminatorio a todos los proveedores de recursos y clientes, capaciten a los consumidores de electricidad, faciliten la agregación de la demanda distribuida y el suministro y contribuyan a la descarbonización de la economía, permitiendo una integración de los mercados y una remuneración basada en el mercado de la electricidad generada a partir de fuentes renovables, así como establecer normas equitativas para el comercio transfronterizo de electricidad, impulsando así la competencia en el mercado interior de la electricidad teniendo en cuenta de las particularidades de los mercados nacionales y regionales.

- **Propuesta de Reglamento para el funcionamiento de ACER** – Este Reglamento establece las normas para el funcionamiento de la Agencia de la Unión Europea para la Cooperación de los Reguladores de la Energía (ACER). La Agencia tendrá como objetivo asistir a las autoridades nacionales reguladoras en materia de electricidad y de gas.

- **Propuesta de Reglamento de Preparación de Riesgos en el sector eléctrico** – Establece normas relativas a la cooperación entre los Estados miembros con vistas a prevenir las crisis de electricidad, prepararse para ellas y gestionarlas bajo los principios de solidaridad y de transparencia y teniendo en cuenta las exigencias de un mercado interior de la electricidad competitivo.

El Consejo y el Parlamento Europeo abordarán, con carácter prioritario, durante 2017 todas estas propuestas legislativas.

1.2.2. Normativa en materia medioambiental

- **Ratificación del Acuerdo de París**

Tras la firma del Acuerdo de parís en la COP 21 la Comisión Europea presentó el 10 de junio de 2016 la propuesta COM(2016) 395: *Decisión del Consejo relativa a la celebración, en nombre de la Unión Europea, del Acuerdo de París aprobado en virtud de la Convención Marco de las Naciones Unidas sobre el Cambio Climático*. El Consejo de Ministros de Medio Ambiente de 30 de septiembre de 2016 acordó la ratificación del Acuerdo de París para combatir el cambio climático por el conjunto de la Unión Europea y el 4 de octubre de 2016 tuvo lugar la aprobación por el Parlamento Europeo. La ratificación ofi-
Ministros de Medio Ambiente de la Unión Europea alcanzó en su reunión del 28 de febrero de 2017 una posición común para reformar el sistema de comercio de emisiones de la Unión Europea (ETS) para el período 2021-2030, que da luz verde a la última fase de negociación con la Eurocámara y la Comisión Europea.

A partir de este momento, negociarán conjuntamente la Comisión Europea, el Parlamento y el Consejo Europeo para llegar a un acuerdo definitivo.

• Régimen de comercio de derechos de emisión de gases de efecto invernadero. Directiva para Sectores ETS (Revisión fase IV)

El 15 de julio de 2015, la Comisión Europea publicó un paquete sobre energía y clima que incluía una propuesta legislativa de revisión del régimen de comercio de derechos de emisión de la Unión Europea (RCDE UE) para la IV fase (2021-2030). Esta propuesta tiene por objeto alcanzar una reducción de las emisiones del RCDE UE del 43% en comparación con 2005.

La Comisión de Medio Ambiente del Parlamento Europeo propuso en diciembre de 2016 que los derechos de emisión se redujeran a un ritmo anual del 2,4%, pero el Pleno de la Eurocámara apoyó que, hasta 2024, se mantenga el ritmo del 2,2% de la propuesta inicial de la Comisión Europea. Asimismo, el Parlamento Europeo respaldó que se suprimieran 800 millones de derechos para corregir así el exceso de derechos en el mercado.

Posteriormente, el Parlamento Europeo aprobó el 15 de febrero de 2017 la reforma del sistema de comercio de emisiones de la Unión Europea (ETS) para el período 2021-2030, en consonancia con los objetivos del Acuerdo de París evitando la deslocalización de las empresas industriales fuera de la UE. El Consejo de Ministros de Medio Ambiente de la Unión Europea alcanzó en su reunión del 28 de febrero de 2017 una posición común para reformar el sistema de comercio de emisiones de la Unión Europea (ETS) para el período 2021-2030, que da luz verde a la última fase de negociación con la Eurocámara y la Comisión Europea.

A partir de este momento, negociarán conjuntamente la Comisión Europea, el Parlamento y el Consejo Europeo para llegar a un acuerdo definitivo.

• Propuesta de Reglamento para Sectores no-ETS

Teniendo en cuenta las políticas que se aplican actualmente, no se prevé que las emisiones de Gases de Efecto Invernadero (GEI) disminuyan lo suficiente para alcanzar el objetivo de la Unión Europea de lograr reducciones de al menos un 40% de aquí a 2030 con respecto a 1990 y, de manera más específica, una reducción del 30% de las emisiones de GEI en los sectores no incluidos en el RCDE en comparación con 2005. Por lo tanto, son necesarios objetivos nacionales que ofrezcan incentivos para aplicar nuevas políticas que promuevan mayores reducciones.

Por este motivo, la Comisión Europea presentó en julio de 2016 la Propuesta de REGLAMENTO DEL PARLAMENTO EUROPEO Y DEL CONSEJO sobre las reducciones anuales vinculantes de las emisiones de gases de efecto invernadero por parte de los Estados miembros de 2021 a 2030 para una Unión de la Energía resiliente y con
objetos de cumplir los compromisos contraídos en el marco del Acuerdo de París, y por el que se modifica el Reglamento (UE) n.º 525/2013 del Parlamento Europeo y del Consejo, relativo a un mecanismo para el seguimiento y la notificación de las emisiones de gases de efecto invernadero y de otra información relevante para el cambio climático.

Esta propuesta define los objetivos nacionales de acuerdo con una reducción a escala europea del 30% de aquí a 2030 en comparación con 2005 en los sectores no incluidos en el RCDE, que sea equitativa y a la vez rentable, según lo aprobado por el Consejo Europeo. Los Estados miembros contribuirán a la reducción global de la UE en 2030 con objetivos que oscilan entre un 0% y un –40% por debajo de los niveles de 2005. Las reducciones previstas en el presente Reglamento promueven mejoras, especialmente en los sectores de la construcción, la agricultura, la gestión de los residuos y el transporte. La propuesta también tiene por objeto hacer cumplir los compromisos de la UE en el marco del Acuerdo de París sobre el cambio climático.

Actualmente, se está negociando el nuevo Reglamento. Aunque las cifras no son aún definitivas, la propuesta de la Comisión Europea plantea para España un objetivo de reducción de sus emisiones en los sectores difusos de un –26% en 2030 comparado con los niveles de 2005.
2. DEMANDA DE ENERGÍA EN ESPAÑA
2.1. ESTRUCTURA ENERGÉTICA ESPAÑOLA

La energía primaria comprende todas las formas de energía disponible en la naturaleza antes de ser convertida o transformada, mientras que la energía final es aquélla que va destinada a usos directos, por ejemplo, en forma de electricidad o calor. Para expresar la transformación entre ambas formas energéticas desde sus formas primarias hasta los usos finales se utiliza el diagrama Sankey, que es una representación de flujo en el que el ancho de las flechas representa la cantidad de energía, y que representa estos procesos de transformación y las pérdidas asociadas a los mismos.

En la figura 2.1 se presenta el diagrama Sankey de la estructura energética española para 2016. En él puede apreciarse la energía primaria consumida, 123.484 ktep. Esta energía se bifurca en los procesos de transformación en energía final, 85.874 ktep, a través del sistema de generación eléctrica y el refino y usos directos, desglosando también las pérdidas y autoconsumos, así como la energía invertida en los procesos de transformación. A la derecha, puede observarse la desagregación de energía final por origen. Finalmente, se representa el uso de energía final por sectores, como la suma, de las desagregaciones de cada fuente energética. El sector «Otros» engloba residencial y servicios, así como agricultura y otros sectores no incluidos en los anteriores.

2.2. DEMANDA DE ENERGÍA FINAL

El consumo de energía final en España durante 2016 fue de 85.874 kilotoneladas equivalentes de petróleo (ktep), un 1,5% superior al de 2015, esta
La demanda final de energía eléctrica ha aumentado un 0,8% respecto a 2015. Esta variación de la demanda se ha visto acompañada de un incremento de las importaciones de electricidad de países colindantes, que ha supuesto un cambio en la tendencia en el saldo neto desde el año 2013, resultando importador. Al contrario, la producción interior de electricidad se ha reducido en un 2,3% respecto a 2015. En relación a la energía final procedente de combustibles, en el caso de carbón ha disminuido su participación en el mix energético respecto a 2015, mientas que se ha incrementado la participación de los productos petrolíferos, 2,3%, y del gas natural, 1,7%. Las energías renovables de uso final también han aumentado su contribución en un 1,5%.

En resumen, en la tabla 2.1 se presenta el consumo de energía final por tipo de energía durante los dos últimos años, junto con la tasa de variación, así como su estructura (figura 2.2). En los siguientes capítulos de este informe se detalla la evolución del consumo de cada tipo de energía.

Intensidad energética final

La tabla 2.2 recoge la evolución de la intensidad energética final, expresada como consumo de energía final por unidad de PIB, desde el año 2000. El PIB utilizado para el cálculo de la intensidad energética final está expresado en términos reales utilizando como referencia la base 2010. En los datos de 2016 puede apreciarse que continua la tendencia de mejora de la intensidad energética que comenzó en 2004, con una disminución del 1,7% con respecto a los datos del año anterior (figura 2.3).
2.3. DEMANDA DE ENERGÍA PRIMARIA

El consumo de energía primaria en España durante 2016 fue de 123.484 ktep (tabla 2.3 y figura 2.4), lo que supuso un aumento del 0,2% respecto al año anterior. Por tanto, el incremento en energía primaria es inferior porcentualmente al de energía final. Este hecho muestra una mejora de la eficiencia del sistema energético español, pues un pequeño aumento en el consumo de energía primaria supone un incremento muy superior de la energía final. Pese a que el incremento de electricidad importada influye en esta conversión, dicho aumento no es determinante en la mejora de...
La demanda de energía en España 2016

DEMANDA DE ENERGÍA EN ESPAÑA

La energía en España 2016

FIGURA 2.3. INTENSIDAD ENERGÉTICA FINAL

![Intensidad energética final](image)

TABLA 2.3. CONSUMO DE ENERGÍA PRIMARIA (KTEP)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2016</th>
<th>Tasa de variación%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbón</td>
<td>13.686</td>
<td>10.442</td>
<td>-23,7</td>
</tr>
<tr>
<td>Petróleo</td>
<td>53.171</td>
<td>54.633</td>
<td>2,7</td>
</tr>
<tr>
<td>Gas natural</td>
<td>24.533</td>
<td>25.035</td>
<td>2,0</td>
</tr>
<tr>
<td>Nuclear</td>
<td>14.934</td>
<td>15.260</td>
<td>2,2</td>
</tr>
<tr>
<td>Hidráulica</td>
<td>2.397</td>
<td>3.130</td>
<td>30,6</td>
</tr>
<tr>
<td>Eólica, Solar y Geotérmica</td>
<td>7.476</td>
<td>7.394</td>
<td>-1,1</td>
</tr>
<tr>
<td>Biomasa, biocarb. y resid. renovables</td>
<td>6.787</td>
<td>6.688</td>
<td>-1,5</td>
</tr>
<tr>
<td>Residuos no renovables</td>
<td>252</td>
<td>243</td>
<td>-3,7</td>
</tr>
<tr>
<td>Saldo imp-exp electricidad</td>
<td>-11</td>
<td>659</td>
<td>5.863,8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>123.225</td>
<td>123.484</td>
<td>0,2</td>
</tr>
</tbody>
</table>

FUENTE: SEE

La eficiencia indicada, puesto que la importación de electricidad tan sólo supone un 0,5% de la energía primaria total.

Por fuentes de energía primaria, cabe destacar que en 2016 el consumo total de carbón fue de 10.442 ktep, con una disminución del 23,7% respecto a 2015. Tras el incremento de generación eléctrica a partir de carbón en el año 2015, la contribución en este año ha retornado a valores similares a los del año 2014. El consumo total de petróleo fue de 54.633 ktep, con aumento del 2,7% respecto al del año anterior, algo superior al aumento del consumo final de productos petrolíferos.

La demanda primaria de gas natural fue de 25.035 ktep con un incremento del 2% respecto a 2015, siendo su contribución al consumo de energía primaria un 20,4%. La aportación de las energías renovables aumenta con respecto al año anterior, debido fundamentalmente a la aportación de la energía hidráulica que en el mix eléctrico que ha
aumentado su producción debido a que el valor medio del producible hidráulico se ha situado por encima del valor medio histórico.

La producción de energía eléctrica de origen nuclear ha aumentado un 2,2% respecto a 2015.

Los cambios en la estructura de generación eléctrica explican los cambios señalados en los puntos anteriores. Cabe destacar, el fuerte descenso de la contribución del carbón en el mix eléctrico, mientras que, en consecuencia, aumentó la participación de la energía hidráulica. Las energías renovables han incrementado su cuota en el sistema eléctrico, superando el 40%.

Durante el año 2015, el descenso de la hidraulidad tuvo como consecuencia una mayor producción de las centrales térmicas, carbón y gas, que en conjunto suplen la energía necesaria en el sistema eléctrico una vez que han entrado en el mix de generación las energías renovables, puesto que estas tienen prioridad, excepto en aquellos casos en los que se ponga en riesgo la seguridad de suministro. A esta energía suministrada por las centrales térmicas se denomina, en consecuencia, hueco térmico. El reparto energético entre estas dos tecnologías, gas y carbón, se hace según el orden de mérito, es decir, los costes relativos de producción eléctrica. Al ser el precio del gas superior al del carbón, éste suministra un porcentaje mayor de energía. Por ello, en el año 2015 la producción de energía eléctrica a partir de carbón aumentó considerablemente.

Intensidad energética primaria

En la tabla 2.4 y figura 2.5 se recoge la evolución del consumo de energía primaria por unidad de PIB desde el año 2000. El PIB utilizado para el cálculo de la intensidad energética final está

<table>
<thead>
<tr>
<th>Año</th>
<th>Energía final/PIB tep/millón €2010</th>
<th>Energía final/PIB% variación anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>143,6</td>
<td>-0,3%</td>
</tr>
<tr>
<td>2001</td>
<td>143,5</td>
<td>-1,4%</td>
</tr>
<tr>
<td>2002</td>
<td>144,5</td>
<td>0,0%</td>
</tr>
<tr>
<td>2003</td>
<td>144,0</td>
<td>0,3%</td>
</tr>
<tr>
<td>2004</td>
<td>143,9</td>
<td>1,4%</td>
</tr>
<tr>
<td>2005</td>
<td>147,5</td>
<td>-1,7%</td>
</tr>
<tr>
<td>2006</td>
<td>135,6</td>
<td>-4,1%</td>
</tr>
<tr>
<td>2007</td>
<td>132,9</td>
<td>-2,0%</td>
</tr>
<tr>
<td>2008</td>
<td>126,7</td>
<td>-4,7%</td>
</tr>
<tr>
<td>2009</td>
<td>120,3</td>
<td>-5,1%</td>
</tr>
<tr>
<td>2010</td>
<td>120,1</td>
<td>-0,2%</td>
</tr>
<tr>
<td>2011</td>
<td>121,1</td>
<td>0,9%</td>
</tr>
<tr>
<td>2012</td>
<td>124,1</td>
<td>2,5%</td>
</tr>
<tr>
<td>2013</td>
<td>118,1</td>
<td>-4,8%</td>
</tr>
<tr>
<td>2014</td>
<td>114,0</td>
<td>-3,5%</td>
</tr>
<tr>
<td>2015</td>
<td>116,4</td>
<td>1,2%</td>
</tr>
<tr>
<td>2016</td>
<td>117,0</td>
<td>-2,9%</td>
</tr>
</tbody>
</table>

Nota: incluidos usos energéticos y no energéticos. **FUENTE: SEE**
expresado en términos reales utilizando como referencia la base 2010. Este indicador de intensidad energética sufre más oscilaciones que el de energía final por unidad de PIB antes citado, al no depender únicamente de la actividad económica sino también de la hidrálucidad y eolicidad del año. No obstante, confirma la tendencia señalada respecto de la intensidad energética final.

En 2016, la intensidad energética primaria descendió un 2,9%. Este cambio es debido al cambio en la estructura del mix de generación eléctrico, entre otras, a la mayor contribución de la energía hidráulica, al descenso de la aportación del carbón así como al incremento de las importaciones internacionales de electricidad, lo que redundó en una mayor eficiencia de los procesos de transformación.

2.4. PRODUCCIÓN INTERIOR DE ENERGÍA PRIMARIA Y GRADO DE AUTOABASTECIMIENTO

Como se indica en la tabla 2.5 y figura 2.6, la producción interior de energía primaria en 2016 fue de 32.902 ktep, un 1,2% inferior a la del año anterior.

La producción de carbón, expresada en miles de toneladas equivalentes de petróleo, bajó un 45%, en línea con la reducción de la generación eléctrica a partir de este combustible. La producción de
petróleo y gas continúa manteniéndose en niveles muy bajos con respecto al consumo, reduciéndose en un 39,2% la de petróleo respecto al 2015.

La producción de energía hidroeléctrica aumentó un 30,6%, la de energía nuclear se mantuvo similar respecto al año anterior y la de otras energías renovables tuvo una reducción en su conjunto.

Empleando la metodología Eurostat para medir el indicador de dependencia energética, se observa en la figura 2.7 que tras la ruptura en el 2014 de la tendencia y el valor similar que se produjo en 2015, 73,4%, en el año 2016 se ha experimentado una reducción respecto a este último año, situándose en un valor del 72,3% y retomándose la tendencia general decreciente que se inició en 2007.
3. SECTOR ELÉCTRICO
En este capítulo se incluyen los datos de los balances eléctricos oficiales que también se publican de forma separada en la Estadística de la Industria de Energía Eléctrica y que figuran en la página web del MINETAD. En estos Balances se aplica la metodología oficial exigida por la AIE y Eurostat. También se incluye información sobre precios y las principales disposiciones regulatorias aprobadas en el año.

3.1. DEMANDA ELÉCTRICA

La demanda final de energía eléctrica en 2016 fue de 233.936 GWh, con aumento del 0,8% respecto a la del año anterior (Cuadro 3.1).

Estas tasas de variación son debidas a la evolución de la actividad económica, en particular de la industria, dado que han tenido poca influencia las diferencias de laboralidad y temperaturas entre los dos años.

3.2. OFERTA ELÉCTRICA

La producción eléctrica bruta en el conjunto nacional ascendió en 2016 a 274.230 GWh, un 2% inferior a la del año anterior. Como puede observarse en el cuadro 3.2, la estructura de generación muestra un aumento de la producción de energía hidroeléctrica significativo, no obstante, hay que tener en cuenta que en el año 2015 la hidroeléctrica disminuyó un 27% respecto al año anterior. La generación mediante energías renovables ha disminuido ligeramente y la producción térmica ha disminuido en un 10% aproximadamente.

La producción en centrales nucleares aumentó ligeramente respecto al año anterior (2,3%). La producción con carbón disminuyó sensiblemente en todos los tipos (antracita, lignito negro y hulla).

La producción con productos petrolíferos, incluyendo su uso como combustible de apoyo en centrales que utilizan principalmente otras energías, ha disminuido. Ha disminuido también la generación en centrales de ciclo combinado con gas en un 4% aproximadamente, y ha aumentado la cogeneración con gas un 6,1%.

Los consumos propios en generación han sido un 8,4% inferiores a los del año anterior. Finalmente, la demanda eléctrica en barras de central, es decir, afectada por las pérdidas de las redes de transporte y distribución y sin restar los consumos de otros sectores transformadores de la energía, subió un 0,8% en relación con la de 2015, con un aumento significativo del saldo importador de intercambios internacionales y del consumo en bombeo.

<table>
<thead>
<tr>
<th>TABLA 3.1. CONSUMO FINAL NACIONAL DE ELECTRICIDAD. (UNIDAD : GWH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo final nacional</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

FUENTE: SEE
3.3. **EVOLUCIÓN DE LOS PRECIOS DE ELECTRICIDAD Y COMPARACIÓN CON OTROS PAÍSES**

Desarrollos normativos aprobados en 2016 sobre peajes, Precio Voluntario para el Pequeño Consumidor (PVPC) y bono social

Orden IET/2735/2015, de 17 de diciembre, por la que se establecen los peajes de acceso de energía eléctrica para 2016 y se aprueban determinadas instalaciones tipo y parámetros retributivos de instalaciones de producción de energía eléctrica a partir de fuentes de energía renovables, cogeneración y residuos.

Real Decreto 469/2016, de 18 de noviembre, por el que se modifica el Real Decreto 216/2014, de 28 de marzo, por el que se establece la metodología de cálculo de los precios voluntarios para el pequeño consumidor de energía eléctrica y su régimen jurídico de contratación.

Orden ETU/1948/2016, de 22 de diciembre, por la que se fijan determinados valores de los costes de comercialización de las comercializadoras de referencia a incluir en el cálculo del precio voluntario para el pequeño consumidor de energía eléctrica en el periodo 2014-2018.

Actualización de los peajes de acceso y determinación del Precio Voluntario para el Pequeño Consumidor (PVPC) en 2016

Según el artículo 2 de la orden de peajes (Orden IET/2735/2015), a partir del 1 de enero de 2016 se aplicaron los peajes siguientes:

a) Para el peaje de acceso **6.1B** de alta tensión, los previstos en el anexo I de dicha orden.

b) Para el peaje de acceso **6.1A** de alta tensión, los previstos en la Orden IET/2444/2014, de 19 de diciembre, por la que se determinan los peajes de acceso de energía eléctrica para 2015.

c) Para las restantes categorías de peajes de acceso, los previstos en la Orden IET/107/2014, de 31 de enero, por la que se revisan los peajes de acceso de energía eléctrica para 2014.

El Precio Voluntario para el Pequeño Consumidor (PVPC) es la actual tarifa a la que pueden acogerse los consumidores cuyo suministro se realiza en baja tensión con potencia contratada hasta 10 kW, la metodología de cálculo se encuentra recogida en el Real Decreto 216/2014, de 28 de marzo. El PVPC está compuesto por los siguientes términos:

a) El término de potencia del PVPC (TPU) es el término de potencia del peaje de acceso (fijado en 38,043426 €/kW en la Orden IET/107/2014, de 31 de enero, por la que se revisan los peajes de acceso de energía eléctrica para 2014, valor que se mantuvo para 2016 de acuerdo con la Orden IET/2735/2015, por
la que se determinan los peajes de acceso de energía eléctrica para 2016) más el margen de comercialización.

De acuerdo con la Orden ETU/1948/2016, de 22 de diciembre, por la que se fijan determinados valores de los costes de comercialización de las comercializadoras de referencia a incluir en el cálculo del precio voluntario para el pequeño consumidor de energía eléctrica en el periodo 2014-2018, el valor del término fijo (CCF) de los costes de comercialización a aplicar en 2016 es de 3,113 €/kW y año y el valor del componente de retribución unitaria (Runitaria) del término variable horario (CCVh) de los costes de comercialización 0,000557 €/kWh.

| Tabla 3.2. Producción nacional de energía eléctrica (por combustibles) (Unidad: GWh) |
|-----------------|-----------------|-----------------|
| | 2015 | 2016 | 2016/2015 |
| Hidroeléctrica | 24.208 | 33.940 | 40,2% |
| Térmica | 152.297 | 136.045 | -10,7% |
| Nuclear | 57.305 | 58.619 | 2,3% |
| Antracita | 4.839 | 3.004 | -37,9% |
| Lignito negro | 3.238 | 1.832 | -43,4% |
| Hulla | 42.723 | 31.013 | -27,4% |
| Gas siderúrgico | 1.091 | 1.015 | -6,9% |
| Gas natural | 28.616 | 27.494 | -3,9% |
| Prod. petrolíferos | 14.484 | 13.068 | -9,8% |
| Hidroeléctrica | 7.160 | 5.915 | -17,4% |
| Eólica | 49.325 | 48.914 | -0,8% |
| Fotovoltaica | 8.267 | 8.064 | -2,5% |
| Termosolar | 5.592 | 5.578 | -0,3% |
| Carbón | 566 | 518 | -8,4% |
| Gas siderúrgico | 219 | - | -100,0% |
| Gas natural | 23.882 | 25.337 | 6,1% |
| Prod. petrolíferos | 2.757 | 3.695 | 34,1% |
| Biomasa | 4.014 | 4.038 | 0,6% |
| Biogas | 982 | 893 | -9,0% |
| R.S.U. renovable| 768 | 734 | -4,5% |
| R.S.U. no renovable | 768 | 734 | -4,5% |
| Otras fuentes | 216 | 226 | 4,6% |
| Total producción nacional (GWh bc) | 281.020 | 274.630 | -2% |

Consumos propios | 11.270 | 10.319 | -8,4% |
Consumo en bombeo | 4.520 | 4.819 | 6,6% |
Importación-exportación | -333 | 7.666 | -5.863,8% |
Demanda nacional (GWh bc) | 265.097 | 267.158 | 1,8% |

Fuente: SEE
b) El término de energía del PVPC (TEU) es diferente en cada hora, ya que depende, entre otros términos como los servicios de ajuste y otros costes asociados al suministro, del precio medio horario resultante para cada hora en el mercado eléctrico.

En diciembre de 2016, 11.825.007 consumidores estaban acogidos al PVPC, el 45,6% de los que tenían derecho a acogerse al mismo. La facturación estimada de los consumidores acogidos al PVPC en 2016, en la que no se incluyen impuestos ni el alquiler de los equipos de medida y control, fue la siguiente, de acuerdo con la información facilitada por la CNMC:

3.4. REGULACIÓN DEL SECTOR

A) Disposiciones publicadas en 2016

Entre las principales disposiciones relativas al sector eléctrico publicadas en el Boletín Oficial del Estado durante el año 2016, cabe señalar las siguientes:

- **Real Decreto-ley 7/2016**, de 23 de diciembre, por el que se regula el mecanismo de financiación del coste del bono social y otras medidas de protección al consumidor vulnerable de energía eléctrica.

- **Real Decreto 469/2016**, de 18 de noviembre, por el que se modifica el Real Decreto 216/2014, de 28 de marzo, por el que se establece la metodología de cálculo de los precios voluntarios para el pequeño consumidor de energía eléctrica y su régimen jurídico de contratación.

- **Orden IET/359/2016**, de 17 de marzo, por la que se establecen las obligaciones de aportación al Fondo Nacional de Eficiencia Energética en el año 2016.

- **Orden IET/980/2016**, de 10 de junio, por la que se establece la retribución de las empresas de distribución de energía eléctrica para el año 2016.

- **Orden IET/981/2016**, de 15 de junio, por la que se establece la retribución de las empresas titulares de instalaciones de transporte de energía eléctrica para el año 2016.

- **Orden IET/1209/2016**, de 20 de julio, por la que se establecen los valores de la retribución a la operación correspondientes al segundo semes-

TABLA 3.3. FACTURACIÓN ESTIMADA (€/KWH) DE LOS CONSUMIDORES ACOGIDOS AL PVPC

<table>
<thead>
<tr>
<th></th>
<th>2015 Tarifa de acceso</th>
<th>2015 Margen de comercialización</th>
<th>2015 Coste de la energía(1)</th>
<th>Total 2015</th>
<th>2015 Modalidad sin discriminación horaria</th>
<th>2015 Modalidad con discriminación horaria en 2 periodos</th>
<th>2015 Modalidad con discriminación horaria en 3 periodos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarifa de acceso</td>
<td>11,43</td>
<td>0,74</td>
<td>6,00</td>
<td>18,17</td>
<td>5,47</td>
<td>0,35</td>
<td>0,21</td>
</tr>
<tr>
<td>Margen de comercialización</td>
<td>0,74</td>
<td>0,35</td>
<td>5,48</td>
<td>11,30</td>
<td>5,46</td>
<td>3,91</td>
<td>5,59</td>
</tr>
<tr>
<td>Coste de la energía(1)</td>
<td>6,00</td>
<td>5,48</td>
<td>5,46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1)Incluye el coste de producción de la energía, el pago de los mecanismos de capacidad, los pagos para la financiación del Operador del Mercado y del Operador del Sistema y los pagos para la financiación del servicio de interrumpibilidad.

FUENTE: Boletín de Indicadores Eléctricos de abril de 2017. CNMC
tre natural del año 2016 y se aprueba una instalación tipo y sus correspondientes parámetros retributivos.

- Orden IET/1451/2016, de 8 de septiembre, por la que se aprueban los porcentajes de reparto de las cantidades a financiar relativas al bono social correspondientes a 2016.

- Orden ETU/1948/2016, de 22 de diciembre, por la que se fijan determinados valores de los costes de comercialización de las comercializadoras de referencia a incluir en el cálculo del precio voluntario para el pequeño consumidor de energía eléctrica en el período 2014-2018.

- Resolución de 18 de enero de 2016, de la Dirección General de Política Energética y Minas, por la que se resuelve la subasta para la asignación del régimen retributivo específico a nuevas instalaciones de producción de energía eléctrica a partir de biomasa en el sistema eléctrico peninsular y para instalaciones de tecnología eólica, al amparo de lo dispuesto en el Real Decreto 947/2015, de 16 de octubre.

- Resolución de 18 de enero de 2016, de la Dirección General de Política Energética y Minas, por la que se fija el precio medio de la energía a aplicar en el cálculo de la retribución del servicio de gestión de la demanda de interrupibilidad ofrecido por los consumidores de los sistemas eléctricos no peninsulares a los que resulta de aplicación la Orden ITC/2370/2007, de 26 de julio, durante el primer trimestre de 2016.

- Resolución de 5 de febrero de 2016, de la Dirección General de Política Energética y Minas, por la que se aprueba el precio de derechos de liquidación para los años 2012, 2013 y 2014 en los sistemas eléctricos de los territorios no peninsulares.

- Resolución de 9 de febrero de 2016, de la Secretaría de Estado de Energía, por la que se modifica la de 18 de diciembre de 2015, por la que establecen los criterios para participar en los servicios de ajuste del sistema y se aprueban determinados procedimientos de pruebas y procedimientos de operación para su adaptación al Real Decreto 413/2014, de 6 de junio, por el que se regula la actividad de producción de energía eléctrica a partir de fuentes de energía renovables, cogeneración y residuos.

- Resolución de 16 de febrero de 2016, de la Secretaría de Estado de Energía, por la que se establece el procedimiento de cálculo de los costes reales para la realización de la liquidación definitiva anual del año 2012, correspondiente a la aplicación del Real Decreto 134/2010, de 12 de febrero, por el que se establece el procedimiento de resolución de restricciones por garantía de suministro y se modifica el Real Decreto 2019/1997, de 26 de diciembre, por el que se organiza y regula el mercado de producción de energía eléctrica.

- Resolución de 1 de marzo de 2016, de la Dirección General de Política Energética y Minas,
por la que se establece el importe definitivo pendiente de cobro a 31 de diciembre de 2015, del derecho de cobro adjudicado en la subasta de 12 de junio de 2008, del déficit reconocido ex ante en la liquidación de las actividades reguladas.

- Resolución de 1 de marzo de 2016, de la Dirección General de Política Energética y Minas, por la que se establece el importe pendiente de cobro a 31 de diciembre de 2015, de los derechos de cobro cedidos al fondo de titulización del déficit del sistema eléctrico.

- Resolución de 17 de marzo de 2016, de la Dirección General de Política Energética y Minas, por la que se inscriben en el registro de régimen retributivo específico en estado de preasignación a las solicitudes adjudicatarias de la subasta para la asignación del régimen retributivo específico a nuevas instalaciones de producción de energía eléctrica a partir de biomasa situadas en el sistema eléctrico peninsular y para instalaciones de tecnología eólica, realizada al amparo del Real Decreto 947/2015, de 16 de octubre, y convocada por Resolución de 30 de noviembre de 2015.

- Resolución de 30 de marzo de 2016, de la Dirección General de Política Energética y Minas, por la que se corrigen errores en la de 23 de diciembre de 2015, por la que se aprueba el perfil de consumo y el método de cálculo a efectos de liquidación de energía, aplicables para aquellos consumidores tipo 4 y tipo 5 que no dispongan de registro horario de consumo, según el Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el reglamento unificado de puntos de medida del sistema eléctrico, para el año 2016.

- Resolución de 5 de abril de 2016, de la Secretaría de Estado de Energía, por la que se aprueba el procedimiento de operación del sistema eléctrico 1.1 «Criterios de funcionamiento y seguridad para la operación del sistema eléctrico».

- Resolución de 18 de abril de 2016, de la Dirección General de Política Energética y Minas, por la que se aprueba el precio de derechos de emisión de liquidación para el año 2015 en los sistemas eléctricos de los territorios no peninsulares.

- Resolución de 28 de abril de 2016, de la Dirección General de Política Energética y Minas, por la que se establecen los criterios que deberán seguir las empresas distribuidoras de energía eléctrica para la remisión del inventario auditado de instalaciones de distribución de energía eléctrica cuya puesta en servicio haya sido anterior al 1 de enero de 2016.

- Resolución de 6 de mayo de 2016, de la Dirección General de Política Energética y Minas, por la que se fija el precio medio de la energía a aplicar en el cálculo de la retribución del servicio de gestión de la demanda de interrumpibilidad ofrecido por los consumidores de los sistemas eléctricos no peninsulares a los que resulta de aplicación la Orden ITC/2370/2007, de 26 de julio, durante el segundo trimestre de 2016.
• Resolución de 12 de mayo de 2016, de la Dirección General de Política Energética y Minas, por la que se establecen los criterios que deberán seguir las empresas distribuidoras de energía eléctrica para elaborar el informe de auditoría externa para todas las instalaciones puestas en servicio el año 2015, y para la modificación de la retribución de las instalaciones existentes cuyos parámetros retributivos hubieran cambiado durante dicho año.

• Resolución de 1 de junio de 2016, de la Secretaría de Estado de Energía, por la que se aprueba el procedimiento de operación 14.3 «Garantías de Pago» y se modifica el procedimiento de operación 14.1 «Condiciones generales del proceso de liquidación del operador del sistema».

• Resolución de 15 de julio de 2016, de la Dirección General de Política Energética y Minas, por la que se fija el precio medio de la energía a aplicar, durante el tercer trimestre de 2016, en el cálculo de la retribución del servicio de gestión de la demanda de interrupibilidad ofrecido por los consumidores de los sistemas eléctricos no peninsulares a los que resulta de aplicación la Orden ITC/2370/2007, de 26 de julio.

• Resolución de 29 de julio de 2016, de la Dirección General de Política Energética y Minas, por la que se publica el valor de la anualidad de la retribución por inversión (CIn) correspondiente a las instalaciones de categoría A de los sistemas eléctricos de los territorios no peninsulares para el año 2016.

• Resolución de 2 de agosto de 2016, de la Secretaría de Estado de Energía, por la que se establece el procedimiento de cálculo de los costes reales para la realización de la liquidación definitiva anual del año 2013, correspondiente a la aplicación del Real Decreto 134/2010, de 12 de febrero, por el que se establece el procedimiento de resolución de restricciones por garantía de suministro y se modifica el Real Decreto 2019/1997, de 26 de diciembre, por el que se organiza y regula el mercado de producción de energía eléctrica.

• Resolución de 5 de agosto de 2016, de la Secretaría de Estado de Energía, por la que se modifica el Procedimiento de Operación 15.2 «Servicio de gestión de la demanda de interrupibilidad», aprobado por Resolución de 1 de agosto de 2014.

• Resolución de 5 de agosto de 2016, de la Secretaría de Estado de Energía, por la que se aprueban las reglas del procedimiento competitivo de subastas para la asignación del servicio de gestión de la demanda de interrupibilidad y el modelo de adhesión al marco legal establecido para la participación en las subastas.

• Resolución de 19 de septiembre de 2016, de la Secretaría de Estado de Energía, por la que se establece el procedimiento de cálculo de los costes reales para la realización de la liquidación definitiva anual del año 2014, correspondiente a la aplicación del Real Decreto 134/2010, de 12 de febrero, por el que se establece el procedimiento de resolución de restricciones por garantía de suministro y se modifica
el Real Decreto 2019/1997, de 26 de diciembre, por el que se organiza y regula el mercado de producción de energía eléctrica.

- Resolución de 6 de octubre de 2016, de la Comisión Nacional de los Mercados y la Competencia, por la que se establecen y publican las relaciones de operadores dominantes en los sectores energéticos.

- Resolución de 6 de octubre de 2016, de la Comisión Nacional de los Mercados y la Competencia, por la que se establecen y publican las relaciones de operadores principales en los sectores energéticos.

- Resolución de 7 de octubre de 2016, de la Secretaría de Estado de Energía, por la que se aprueba el calendario y las características, para la temporada eléctrica 2017, del procedimiento competitivo de subastas para la asignación del servicio de gestión de la demanda de interrupibilidad regulado en la Orden IET/2013/2013, de 31 de octubre.

- Resolución de 14 de octubre de 2016, de la Dirección General de Política Energética y Minas, por la que se fija el precio medio de la energía a aplicar, durante el cuarto trimestre de 2016, en el cálculo de la retribución del servicio de gestión de la demanda de interrupibilidad ofrecido por los consumidores de los sistemas eléctricos no peninsulares a los que resulta de aplicación la Orden ITC/2370/2007, de 26 de julio.

- Resolución de 19 de octubre de 2016, de la Dirección General de Política Energética y Minas, por la que se aprueba la cuantía definitiva de los costes de generación de liquidación y del extracoste de la actividad de producción en los territorios no peninsulares correspondientes al ejercicio 2012 para los grupos titularidad del grupo Endesa.

- Resolución de 19 de octubre de 2016, de la Dirección General de Política Energética y Minas, por la que se aprueba la cuantía definitiva de los costes de generación de liquidación y del extracoste de la actividad de producción en los territorios no peninsulares correspondientes al ejercicio 2013 para los grupos titularidad del grupo Endesa.

- Resolución de 21 de diciembre de 2015, de la Dirección General de Política Energética y Minas, por la que se determina la anualidad correspondiente a 2015 y el importe pendiente de compensación a 26 de octubre de 2015, de los proyectos de centrales nucleares paralizados definitivamente por la disposición adicional séptima de la Ley 54/1997, de 27 de diciembre, del Sector Eléctrico.

- Resolución de 22 de diciembre de 2015, de la Dirección General de Industria y de la Pequeña y Mediana Empresa, por la que se publican las cuantías de las comisiones aplicables a los avales otorgados a las emisiones de valores de renta fija, realizadas al amparo de los convenios de promoción de fondos de titulización de activos para favorecer la financiación empresarial.
por la que se aprueba para el año 2017 el perfil de consumo y el método de cálculo a efectos de liquidación de energía, aplicables para aquellos consumidores tipo 4 y tipo 5 que no dispongan de registro horario de consumo, según el Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el reglamento unificado de puntos de medida del sistema eléctrico.

- Corrección de errores de la Resolución de 23 de diciembre de 2015, de la Dirección General de Política Energética y Minas, por la que se aprueba el perfil de consumo y el método de cálculo a efectos de liquidación de energía, aplicables para aquellos consumidores tipo 4 y tipo 5 que no dispongan de registro horario de consumo, según el Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento unificado de puntos de medida del sistema eléctrico, para el año 2016.

- Corrección de erratas de la Resolución de 23 de diciembre de 2015, de la Secretaría de Estado de Energía, por la que se aprueban las Reglas de funcionamiento de los mercados diario e intra-diario de producción de energía eléctrica.

B) Propuestas de la Comisión Europea para la transición hacia una energía limpia

La Comisión presentó en noviembre de 2016 un paquete de medidas para preservar la competitividad de la Unión Europea en la transición hacia una energía limpia que está cambiando los mercados mundiales de la energía. La denominación de este paquete es: «Energía limpia para todos los europeos».

La Comisión pretende que la UE no solo se adapte a esta transición, sino que la lidere. Por esta razón, la UE se ha comprometido a reducir las emisiones de CO2 en al menos un 40 % de aquí a 2030 y, al mismo tiempo, modernizar la economía de la UE y crear crecimiento y empleo para todos los ciudadanos europeos. Las propuestas tienen tres objetivos fundamentales: dar prioridad a la eficiencia energética, convertir a la Unión Europea en líder mundial de energías renovables y ofrecer un trato justo a los consumidores.

Los consumidores son agentes activos y centrales en los mercados de la energía del futuro. En el futuro, todos los consumidores de la UE dispondrán de una mayor oferta de suministro y podrán acceder a unas herramientas de comparación de precios de la energía fiables. Gracias al aumento de la transparencia y a la mejora de la legislación, la sociedad civil tendrá más oportunidades de participar activamente en el sistema energético y de responder a las señales de precios. El paquete incluye asimismo una serie de medidas destinadas a proteger a los consumidores más vulnerables.

Las propuestas de la Comisión relativas a una «Energía limpia para todos los europeos» tienen por objeto demostrar que la transición hacia una energía limpia es el sector de crecimiento del futuro. Las energías limpias atrajeron en 2015 una inversión global superior a los 300.000 millones de euros. La UE está bien situada para utilizar sus
políticas de investigación, desarrollo e innovación a fin de convertir esta transición en una oportunidad industrial concreta. Al movilizar hasta 177.000 millones de euros de inversión pública y privada al año a partir de 2021, este paquete de medidas puede generar un aumento de hasta un 1% del PIB durante la próxima década y crear 900.000 empleos nuevos.

Las propuestas legislativas de energía limpia para todos los europeos abarcan la eficiencia energética, las energías renovables, el diseño del mercado de la electricidad, la seguridad del abastecimiento de electricidad y las normas de gobernanza de la Unión de la Energía. La Comisión propone además nuevas perspectivas de diseño ecológico y una estrategia para una movilidad conectada y automatizada.

En lo que afecta específicamente al sector eléctrico cabe destacar las siguientes propuestas de Directivas y Reglamentos:

• Directiva de mercado interior de electricidad. Revisa la Directiva 2009/72/CE a fin de potenciar el rol de los consumidores y con un enfoque regional. La propuesta introduce nuevo contenido en relación con diversas materias (fomento del autoconsumo y gestión de demanda; participación de los consumidores en el mercado, nuevos sujetos; supervisión de la pobreza energética, etc.) y revisa aspectos sobre cuestiones ya existentes (funciones de los gestores de la red de transporte y distribución, etc.).

• Directiva de renovables: establece un objetivo de renovables para la UE y aprueba un marco común para el fomento de estas fuentes, en el ámbito de la generación eléctrica, calor, frío y transporte.

• Reglamento de gobernanza de la Unión energética: establece un mecanismo de gobernanza con el objetivo de implementar las estrategias y medidas necesarias para el cumplimiento de los objetivos 2030 de la UE para energía y clima, y regula los procedimientos de remisión de información entre la UE y los estados miembros. Unifica obligaciones hasta ahora dispersas en las distintas directivas y reglamentos y aumenta las competencias en materia energética a ejercer por la CE.

• Directiva de eficiencia: Solo modifica determinados artículos de la directiva de 2012 relacionados con los objetivos de eficiencia energética a 2030. Los aspectos eléctricos anteriormente incluidos en esta directiva (contadores, transporte y distribución...) se llevan a la normativa de mercado interior.

• Reglamento de ACER (Agency for the Cooperation of Energy Regulators): Actualiza el Reglamento existente reforzando las funciones de la Agencia en cuanto a supervisión del mercado mayorista europeo y las infraestructuras transfronterizas, incluyendo más participación en elaboración de códigos de red y adopción de decisiones para su implementación.

• Reglamento del mercado de electricidad: Revisa el Reglamento de 2009 introduciendo: un enfoque regional, definición de criterios que posibiliten el desarrollo de mercado de electricidad
3.5. EVOLUCIÓN DEL MERCADO DE PRODUCCIÓN DE LA ELECTRICIDAD

La contratación de energía en el programa resultante de la casación del mercado diario en el sistema eléctrico español en 2016, ha ascendido a 183.970 GWh, lo que supone un aumento del 4,5% respecto al año 2015, con un precio medio de 39,67 €/MWh, un 21,2% más reducido que el año anterior.

La contratación de energía en el programa resultante de la casación del mercado intradiario en el mismo periodo, se ha situado en 27.600 GWh, lo que representa un descenso del 0,7% respecto al año 2015, con un precio medio de 40,60 €/MWh, un 21,0% inferior al de 2015.

El precio horario final medio del sistema peninsular en 2016 fue de 48,41 €/MWh, con un descenso del 23% respecto del año anterior. El 84%, aproximadamente, de este precio correspondió en 2016 a la componente del precio del mercado diario.
4. SECTOR NUCLEAR
4.1. GENERACIÓN ELÉCTRICA DE ORigen NUCLEAR

En España hay 8 reactores nucleares, situados en 6 emplazamientos, que suponen una potencia instalada de 7.864,7 MWe, lo que representa el 7,2% de la potencia total de generación eléctrica instalada.

La producción bruta de energía eléctrica de origen nuclear durante 2016 ha sido de 58.578 GWh, lo que supone una contribución del 21,4% al total de la producción nacional (262.321 GWh), siendo, por sexto año consecutivo, la tecnología que mayor producción ha aportado al sistema eléctrico español.

4.2. FABRICACIÓN DE COMBUSTIBLE NUCLEAR

En 2016, la fábrica de elementos de combustible nuclear de Juzbado (Salamanca), propiedad de la empresa ENUSA Industrias Avanzadas, S.A., ha fabricado 603 elementos combustibles, de los cuales 513 correspondían al tipo PWR (reactor de agua a presión) y 90 al tipo BWR (reactor de agua en ebullición). Estos elementos incorporaban 272,5 toneladas de uranio. Del total, el 31% fueron fabricados para el mercado nacional y el 69% para la exportación, con destino a Francia, Bélgica y Alemania.

Las cantidades adquiridas por ENUSA para las centrales nucleares españolas fueron las siguientes: 1.976 toneladas de concentrados de uranio (U_3O_8), 1.530 toneladas en servicios de conversión y 1.189 miles de UTS (Unidades de Trabajo de Separación) en servicios de enriquecimiento.

4.3. GESTIÓN DEL COMBUSTIBLE NUCLEAR GASTADO Y OTROS RESIDUOS RADIactivos

Construcción del Almacén Temporal Centralizado de combustible nuclear gastado y residuos de alta actividad (ATC) y su centro tecnológico asociado (CTA)

Durante el año 2016, ha continuado el proceso de licenciamiento de esta instalación, cuyo titular es ENRESA, como empresa que tiene encomendado, por ley, el servicio público esencial de gestión de combustible gastado y residuos radiactivos.

Por una parte, el proyecto de la instalación requiere la obtención de una Declaración de Impacto Ambiental (DIA) a emitir por el Ministerio de Agricultura y Pesca, Alimentación y Medioambiente (MAPAMA), de acuerdo con lo establecido en el Real Decreto Legislativo 1/2008, de 11 de enero, por el que se aprueba el texto refundido de la Ley de Evaluación de Impacto Ambiental de proyectos, dada su condición de instalación diseñada exclusivamente para el almacenamiento (proyectado para un periodo superior a diez años) de combustible nuclear gastado o de residuos radiactivos en un lugar distinto del de producción.

El procedimiento se inició en agosto de 2013, con la presentación por ENRESA de la solicitud de sometimiento del proyecto a Evaluación de Impacto...
SECTOR NUCLEAR

Ambiental, ante el Ministerio de Industria, Energía y Turismo, MINETUR (actualmente, el Ministerio de Energía, Turismo y Agenda Digital ha heredado las competencias en materia de energía), que es el órgano sustantivo en dicho procedimiento. Una vez efectuados los trámites establecidos en la Ley, incluido el trámite de información pública y consultas al Estudio de Impacto Ambiental (EIA), está pendiente la formulación de la DIA por el Ministerio de Agricultura y Pesa, Alimentación y Medio Ambiente, MAPAMA.

Por otra parte, de acuerdo con el Reglamento sobre instalaciones nucleares y radiactivas (RINR), aprobado por Real Decreto 1836/1999, de 3 de diciembre, la instalación nuclear del ATC requiere diversas autorizaciones, como la autorización previa o de emplazamiento, la autorización de construcción y la autorización de explotación, que se concederán tras los preceptivos informes favorables del CSN. A tal efecto, en enero de 2014, ENRESA solicitó simultáneamente, ante el MINETUR, la autorización previa o de emplazamiento y la autorización de construcción.

En virtud de lo establecido en el RINR, la autorización previa fue sometida a información pública, de forma conjunta a la correspondiente al EIA durante el año 2014. Posteriormente, en julio de 2015, el CSN informó favorablemente la solicitud de autorización previa, mediante la emisión del correspondiente informe, preceptivo y vinculante, de fecha 27 de julio de 2015.

No obstante lo anterior, el proceso de concesión de la DIA fue paralizado por la Junta de Comunidades de Castilla-La Mancha mediante la ampliación del Espacio Protegido Red Natura 2000 Laguna de El Hito (Zona de Especial Protección para las Aves).

Por otra parte, la Consejería de Fomento de la Junta de Comunidades de Castilla-La Mancha procedió a anular, el 11 de noviembre de 2015, el Plan de Ordenación Municipal (POM) de Villar de Cañas, que había sido aprobado por la Comisión Provincial de Ordenación del Territorio y Urbanismo de Cuenca el 19 de junio de ese mismo año.

Las circunstancias anteriores supondrán un retraso en el desarrollo del proyecto, con las incertidumbres que suponen la resolución de los contenciosos existentes.

Combustible irradiado almacenado en las centrales nucleares

El combustible irradiado descargado de cada reactor se almacena en las piscinas de las centrales nucleares. Adicionalmente, las centrales nucleares de Trillo, Ascó I y Ascó II disponen de un ATI situado en el emplazamiento de cada central, donde se almacena en seco el combustible gastado, tras ser enfriado un tiempo en la piscina.

Asimismo, todo el combustible gastado resultante de la operación de la central nuclear de José Cabrera, actualmente en fase de desmantelamiento, está depositado en el ATI existente en su emplazamiento. En la tabla siguiente se muestra la cantidad total de uranio irradiado almacenado en las centrales nucleares.
Construcción de un Almacén Temporal Individualizado (ATI) para el combustible gastado en la central nuclear de Santa María de Garoña

Mediante Resolución de la Dirección General de Política Energética y Minas de fecha 13 de octubre de 2015, se autorizó la ejecución y montaje del Almacén Temporal Individualizado (ATI) para el combustible gastado en la central nuclear de Santa María de Garoña, al objeto de resolver las necesidades de almacenamiento de combustible gastado en el emplazamiento de la Central hasta que sea posible su traslado al ATC. El proyecto del ATI se ajustará a lo establecido en la Resolución de 30 de septiembre de dicho año, de la Secretaría de Estado de Medio Ambiente del MAPAMA, por la que se formuló Declaración de Impacto Ambiental.

De acuerdo con lo establecido en el Reglamento sobre instalaciones nucleares y radiactivas, con fecha 26 de abril de 2016 el titular solicitó a la Dirección General de Política Energética y Minas la autorización de puesta en servicio del ATI, estando pendiente de recibirse el preceptivo informe del CSN.

Posteriormente, al cierre del presente informe, se ha dictado la Orden de 1 de agosto de 2017, por la que se deniega la renovación de la autorización de explotación de la central nuclear de Santa María de Garoña. En consecuencia, será necesario valorar las necesidades actuales de almacenamiento en el ATI, a la luz de la nueva situación de la central.

Construcción de un Almacén Temporal Individualizado (ATI) para el combustible gastado en la central nuclear de Almaraz

En noviembre de 2015, Centrales Nucleares Almaraz-Trillo A.I.E. (CNAT), titular de esta central nuclear, solicitó a la Dirección General de Política Energética y Minas la autorización de ejecución y montaje de un ATI para el almacenamiento

TABLA 4.1. CANTIDAD DE URANIO IRRADIADO ALMACENADO EN LAS CENTRALES NUCLEARES ESPAÑOLAS

<table>
<thead>
<tr>
<th>Reactor</th>
<th>Uranio (total) almacenado a 31-12-16 (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>En las piscinas</td>
</tr>
<tr>
<td>José Cabrera</td>
<td>95.750</td>
</tr>
<tr>
<td>Sta. Mª de Garoña</td>
<td>420.243</td>
</tr>
<tr>
<td>Almaraz I</td>
<td>635.690</td>
</tr>
<tr>
<td>Almaraz II</td>
<td>628.390</td>
</tr>
<tr>
<td>Ascó I</td>
<td>509.944</td>
</tr>
<tr>
<td>Ascó II</td>
<td>504.226</td>
</tr>
<tr>
<td>Cofrentes</td>
<td>723.053</td>
</tr>
<tr>
<td>Vandellós II</td>
<td>519.140</td>
</tr>
<tr>
<td>Trillo</td>
<td>223.111</td>
</tr>
<tr>
<td></td>
<td>299.504</td>
</tr>
</tbody>
</table>
de combustible gastado, en su emplazamiento, con el fin de poder garantizar la continuación de la operación de la central más allá del año 2018, debido a la saturación de sus piscinas de combustible gastado y ante un eventual retraso de la entrada en operación del ATC. Esta autorización requiere informe preceptivo favorable del CSN y Declaración de Impacto Ambiental (DIA).

El CSN emitió su informe el 8 de septiembre de 2016, estableciendo determinados límites y condiciones para la ejecución y montaje de este ATI.

En relación con la DIA, a efectos de lo previsto en la Ley 21/2013, de 9 de diciembre, de evaluación ambiental, CNAT, en agosto de 2015, solicitó al entonces Ministerio de Industria, Energía y Turismo, como órgano sustantivo, el inicio de la tramitación de la Evaluación de Impacto Ambiental. Finalizado el plazo de información pública, el proyecto se remitió al MAPAMA, que emitió DIA favorable, aprobada por Resolución de la Secretaría de Estado de Medio Ambiente, de 7 de noviembre de 2016.

Con ello, la Dirección General de Política Energética y Minas concedió la autorización para la ejecución y montaje del ATI, mediante resolución de 14 de diciembre de 2016, que incorpora los límites y condiciones establecidos en el informe del CSN.

Cabe señalar que, a principios de octubre de 2016, cuando la tramitación del procedimiento de evaluación ambiental del ATI estaba cerca de su terminación, las Autoridades de Portugal reclamaron a las Autoridades españolas la participación de su país en este procedimiento, alegando la posible existencia de impactos transfronterizos.

Tras un periodo de negociaciones entre las autoridades portuguesas y las españolas, entre las que se incluyó una visita a la C.N. Almaraz el 27 de febrero de 2017, el Presidente de la Comisión Europea, el Presidente del Gobierno español y el Primer Ministro portugués hicieron pública una declaración conjunta el 29 de abril de 2017. En ella, confirmaron que las partes habían llegado a un acuerdo en relación con el ATI de Almaraz, basado en una serie de recomendaciones realizadas por la parte portuguesa en relación con este proyecto, así como en un compromiso de refuerzo de la cooperación e intercambio de información.

Residuos radiactivos de baja y media actividad

La instalación de almacenamiento de residuos radiactivos sólidos de Sierra Albarrana, Centro de Almacenamiento «El Cabril», situado en la provincia de Córdoba y propiedad de ENRESA, está destinada al almacenamiento de residuos radiactivos sólidos de media, baja y muy baja actividad.

De las 28 celdas de almacenamiento de residuos de baja y media actividad de que dispone, en diciembre de 2016 se encontraban completas y cerradas las 16 estructuras de la plataforma norte de la instalación y 4 estructuras de la plataforma sur, estando operativa una celda más y otras tres adicionales que albergan residuos procedentes de incidentes acaecidos en industrias relacionadas con la transformación de materiales metálicos.
En relación al almacenamiento de residuos de muy baja actividad, ya se ha completado la primera sección de la primera celda (denominada celda 29) que, desde el año 2008, está operativa para el almacenamiento de este tipo de residuos, y en julio de 2016 se inició la operación de la segunda celda de ese tipo (celda 30), tras obtener la apreciación favorable por el CSN. Asimismo, se está trabajando en la contratación de las obras de cierre de la primera sección de la celda 29 y de construcción de la segunda sección de dicha celda.

Durante 2016, El Cabril ha recibido un total de 622 m3 de residuos de baja y media actividad y 477 m3 de residuos de muy baja actividad (1.079 m3 procedentes de instalaciones nucleares, y 20 m3, de instalaciones radiactivas).

Con la cantidad recibida en 2016, El Cabril almacena definitivamente un total de 42.285 m3 de residuos radiactivos, de los que 32.198 m3 corresponden a residuos de baja y media actividad, almacenados en celdas con un porcentaje de ocupación del 74% de su capacidad total. Los restantes 10.087 m3 corresponden a residuos de muy baja actividad, almacenados en las dos celdas construidas para tal fin, siendo la capacidad ocupada de la celda 29 del 31% y de la celda 30 del 2%.

4.4. FABRICACIÓN DE EQUIPOS

Equipos Nucleares, S.A. (ENSA) es la empresa española de referencia internacional en la fabricación de grandes componentes para centrales nucleares. Su fábrica se encuentra ubicada en Málaga (Cantabria), al sur de la bahía de Santander. ENSA es un suministrador multi-sistema con una gran orientación internacional, capaz de fabricar equipos de diferentes tecnologías, incluyendo diseños propios, bajo estrictos estándares y normas internacionales.

Durante 2016 continuaron las actividades de fabricación en ENSA de los generadores de vapor de replazo contratados (tres de tipo 900 MWe y ocho de tipo 1300 MWe) para plantas de EDF en Francia y tres para el mercado de los EEUU, que fueron entregados en julio en la central. En cuanto al sector del reemplazo de tapas de vasija del reactor, ENSA finalizó la fabricación de la tapa para la central de Beaver Valley, y ha comenzado la fabricación de la tapa de Shearon Harris, ambas con destino a los EEUU. La tapa de la central de Beaver Valley fue igualmente entregada en julio, junto con los generadores de vapor. También se mantuvieron varias reuniones en la India para afianzar la participación de ENSA en el programa nuclear actual y futuro de ese país.

En lo relativo a contenedores de combustible usado, ENSA finalizó en 2016 la fabricación de cuatro contenedores del tipo DPT de diseño propio para la central española de Trillo. Estas han sido las últimas unidades entregadas de dicho diseño de contenedor de un total de 32 unidades. Además, en 2016 continuó la fabricación de cinco contenedores del tipo ENUN 52B, también de diseño propio, para la central de Santa María de Garoña y siete contenedores para la central de Ascó. Para la central de Ascó se iniciaron los trámites en 2016 para el suministro adicional de 4 contenedores más. Igualmente se continuó con la fabricación
de diez contenedores ENUN 32P para las centrales de Trillo y Almaraz, tras obtener la licencia de transporte de combustible de bajo quemado de dicho diseño. También han continuado en 2016 las actividades de licenciamiento del contenedor ENUN 24P para el mercado chino, tanto con las autoridades españolas como con las chinas.

Por otra parte, ENSA firmó con ENUSA un nuevo contrato para el suministro de cabezales de combustible.

Todos los contenedores en operación en España han sido fabricados por ENSA y las correspondientes operaciones en planta han sido realizadas por personal de ENSA y su filial ENWESA. Ambas mantienen una significativa presencia en todas las centrales españolas en las que realizan servicios durante la operación y paradas de las centrales destacando las actividades relativas a la gestión del combustible gastado. En 2016, ENSA y ENWESA realizaron la carga de contenedores en las centrales de Trillo y Ascó.

En el ámbito de la gestión de combustible, ENSA ha instalado satisfactoriamente los bastidores de combustible fresco para el almacenamiento en húmedo de elementos combustibles en la central finlandesa de Olkiluoto y continúa fabricando durante el 2015 para centrales francesas y coreanas bastidores de diseño propio.

En el sector de la energía nuclear de fusión, ENSA firmó un contrato con el consorcio Ansaldo-Mangiarotti-Walter Tosto para la fabricación de los segmentos de varios sectores del reactor de fusión ITER. Adicionalmente, ENSA ha sido adjudicataria de otros 4 tanques de tritio cuya entrega está prevista para el verano del 2018, mientras continúa desarrollando los procedimientos y técnicas que serán utilizadas durante el montaje de los sectores de la cámara de vacío.

Por otra parte, ENSA está próxima a finalizar la fabricación de los intercambiadores del reactor experimental francés Jules Horowitz Reactor (JHR), que sustituirá a varios reactores experimentales que se encuentran en la fase final de su explotación. Este proyecto está promocionado por las instituciones francesas CEA, EDF y AREVA. España participa en él a través de un Consorcio liderado por CIEMAT y constituido por el CSN, ENUSA, ENSA, ENRESA, Empresarios Agrupados, Tecnatom y Gas Natural Fenosa Engineering. Los intercambiadores citados, que ENSA está fabricando, son importantes componentes del circuito primario que forman parte de la aportación del Consorcio español al proyecto JHR.

4.5. DESMANTELAMIENTO DE INSTALACIONES

Desmantelamiento de la central nuclear José Cabrera

La central nuclear José Cabrera, situada en Almonacid de Zorita (Guadalajara), fue la primera central nuclear construida en España. Se conectó a la red en julio de 1968; tenía una potencia de 250 MWe y el 30 de abril de 2006 cesó su explotación.

Por Orden Ministerial de 1 de febrero de 2010 se autorizó la transferencia de la titularidad de esta
central nuclear de Gas Natural S.A. a ENRESA, y se otorgó a esta última autorización para la ejecución del desmantelamiento de la central. Dicha transferencia de titularidad tuvo lugar el 11 de febrero de ese mismo año.

Previamente a la transferencia de titularidad y al inicio de las actividades de desmantelamiento, se descargó el combustible del reactor y de la piscina de almacenamiento, y se acondicionaron los residuos generados durante la explotación. Todo el combustible gastado (377 elementos) está almacenado temporalmente en contenedores en seco en el ATI situado en el emplazamiento de la central, que fue autorizado mediante Resolución de la DGPEM de fecha 15 de diciembre de 2006. Se trata del primer desmantelamiento completo (nivel 3 del OIEA) de una central nuclear en España.

Durante el año 2016 las actividades realizadas se han centrado fundamentalmente en la ejecución de los trabajos de desmontaje radiológico y de descontaminación de edificios, así como en la adaptación y mejora de sistemas soporte e instalaciones auxiliares.

En el mes de septiembre finalizó la retirada del hormigón que rodeaba la vasija del reactor, denominado blindaje biológico, que posteriormente se segmentó, y en diciembre finalizó la segmentación de la antigua tapa de la vasija del reactor, mediante hilo de diamante.

Las principales actividades de ejecución que restan por hacer son la descontaminación de edificios y estructuras y su demolición, así como la restauración del emplazamiento. Por lo que se refiere a la restauración de terrenos contaminados, durante 2016 se ha trabajado en la puesta en marcha de una planta de lavado de tierras, al objeto de reducir el volumen de las tierras contaminadas a gestionar como residuos de baja y media actividad. La puesta en marcha de esta planta ha tenido lugar en marzo de 2017.

Desde que comenzaron los trabajos, la masa total generada de materiales ha sido de, aproximadamente, 12.513.624 kg, de los que 6.061.592 (48%) corresponden a material convencional, 1.857.267 kg (15%) a residuos radiactivos de baja y media actividad, 3.279.282 kg (26%) a residuos radiactivos de muy baja actividad y 1.315.483 kg (11%) a material desclasificable.

El avance general del proyecto de desmantelamiento de la instalación es del orden del 80%, previéndose que finalice en el año 2019.

Plan Integrado para la Mejora de las Instalaciones del CIEMAT (PIMIC)

Por Orden del Ministerio de Industria, Turismo y Comercio ITC/4035/2005, de 14 de noviembre de 2005, se autorizó el desmantelamiento de las instalaciones paradas y en fase de clausura del Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), situadas en Madrid.

El Plan Integrado para la Mejora de las Instalaciones del CIEMAT (PIMIC) tiene como objetivos la modernización de las instalaciones, la mejora y saneamiento de infraestructuras, el desmantela-
miento de las seis instalaciones radiactivas paradas y obsoletas, y la limpieza de zonas con contaminación residual de actividades anteriores. Está dividido en dos proyectos: Rehabilitación y Desmantelamiento, este último realizado de manera conjunta con ENRESA.

El Consejo de Seguridad Nuclear (CSN) es el organismo encargado de supervisar e inspeccionar todas las actuaciones del PIMIC, tanto desde el punto de vista documental (manual, reglamento de funcionamiento, procedimientos, registros de actuaciones, etc.), como de operación y dosimetría de los trabajadores y del público en general.

Desde su comienzo, las operaciones de descontaminación y limpieza más significativas ya ejecutadas son las siguientes:

- Reactor experimental JEN-1 (IN-01)
- Planta de almacenamiento de residuos líquidos radiactivos (IN-07)
- Planta de acondicionamiento de residuos líquidos radiactivos (IR-16)
- Planta de desarrollo de elementos combustibles para reactores de investigación (IN-03)
- Laboratorio de metrología de radionucleidos (IR-13A)

Entre el año 2000 y el 2003 se acometió la caracterización de toda el área del CIEMAT, que fue dividida en 28 parcelas para sistematizar el proceso de limpieza radiológica; de las cuales en 22 se han terminado ya las operaciones de rehabilitación, en 4 finalizarán próximamente las operaciones de desmantelamiento, y en 2 áreas se iniciarán en breve plazo las actividades de rehabilitación.

Durante el año 2016 se han desarrollado actuaciones de descontaminación y limpieza en los terrenos contaminados de las áreas denominadas como «El Montecillo» y «La Lenteja», así como en las instalaciones Planta piloto de reproceso de combustibles irradiados M-1 (IR-18) y Celdas calientes metalúrgicas (IN-04).

4.6. I+D

La Plataforma Tecnológica de I+D de energía nuclear de fisión CEIDEN, creada en el año 2007, ha continuado con sus actividades de coordinación de planes y programas nacionales de I+D, así como la participación en programas internacionales.

En el año 2016, una vez definidos los objetivos y líneas de actuación prioritarias para el bienio, 2016-2017, se ha trabajado de acuerdo con dichos objetivos, basados en tres retos tecnológicos del sector nuclear:

- Operación segura a largo plazo de los activos nucleares.
- Gestión del combustible irradiado y de los residuos radiactivos.
- Nuevas tecnologías/proyectos.
Los principales programas o proyectos actualmente en curso en el seno de la Plataforma Tecnológica CEIDEN son:

1. Criterios de diseño y seguridad para el almacenamiento y transporte en seco de combustible gastado.
2. Aprovechamiento de materiales de la CN José Cabrera: hormigones.
3. Aprovechamiento de materiales de la CN José Cabrera: internos de la vasija (proyecto ZIRP, en fase de ampliación).
5. ESNII (Participación española en European Sustainable Nuclear Industry Initiative).
6. Grupo de trabajo Formación F+.
7. Grupo de trabajo KEEP (gestión del conocimiento nuclear).
9. Grupo de trabajo de usuarios de laboratorios de calibración de patrones neutrónicos.
10. Actualización del catálogo de códigos de cálculo utilizados en el sector nuclear español.
11. Grupo de seguimiento de Proyectos Sociotécnicos (HoNEST).

Durante el año 2016, se han realizado las siguientes actividades:

- Se ha celebrado la Asamblea General de la Plataforma en noviembre (en el CSN), cuya apertura contó con la presencia del Director General de la Agencia de Energía Nuclear (NEA) de la OCDE, Mr. William Magwood, que realizó una presentación.
- Se han mantenido dos reuniones del Consejo Gestor (en las sedes de ENDESA y ENUSA (fábrica de Juzbado, Salamanca).
- Se han realizado las siguientes jornadas CEIDEN:
 - Reino Unido, 1 y 2 de febrero de 2016, en las instalaciones del NNL en Sellafield.
 - Visita a la Fábrica de Elementos Combustibles de ENUSA en Juzbado (Salamanca), el 16 de junio de 2016.
- Se ha lanzado un nuevo grupo CEIDEN de pymes, que está desarrollando un programa de actividades de alto interés.
- Se ha realizado el ejercicio de la definición de tres ITPs (Iniciativas Tecnológicas Prioritarias) para la Alianza por la Investigación y la Innovación Energética (ALINNE), basadas en los tres retos tecnológicos definidos por el Plan Estratégico de la Plataforma.
- Se han realizado, entre otras, las siguientes presentaciones monográficas en los Consejos Gestores:
- Gestión del Conocimiento Nuclear: ICA2.
- Mecanismos de ayuda a la I+D+i nuclear: CDTI.

- Se ha continuado con el refuerzo de cooperación con entidades y asociaciones del máximo interés, a nivel nacional e internacional, destacando la formalización de relaciones de cooperación con EPRI y con la red latinoamericana de educación y capacitación nuclear, LANENT.

- Se continúa apoyando el lanzamiento de proyectos internacionales que lideran o en los que participan organizaciones españolas.

- Se está desarrollando un catálogo de infraestructuras de I+D nuclear en España.

- Se continúa elaborando documentos CEIDEN de interés general (memoria 2014/2015, mapa de actividades, catálogo de códigos de cálculo, etc.).

- Se han realizado las siguientes actividades de difusión del CEIDEN.
 - Artículo en la Revista Nuclear España de la SNE, número de octubre 2016, sobre Plataformas Tecnológicas.
 - Artículo en la Revista Alfa del CSN, número 31/2016.
 - Asistencia al Foro Transfiere, 10-11 de febrero de 2016, Málaga:
 - Representación del CEIDEN en el Foro Transfiere.
 - Presentación de ENSA en la Mesa de Fabricación Avanzada.
 - Asistencia a reunión de plataformas tecnológicas de la Energía, y contacto con otras plataformas.
 - Presentación de CEIDEN en la jornada I+D del CSN (junio de 2016).
 - Presentación de CEIDEN en la Embajada de Irán en España (julio de 2016).
 - Presencia de CEIDEN en la III International Nuclear Knowledge Management Conference (OIEA, Viena, 07-11.11.16).

- Se ha realizado un seguimiento periódico de las actividades de la plataforma europea «Sustainable Nuclear Energy Technology Platform» SNE-TP.

- Se ha realizado un seguimiento periódico de la participación española en el programa de EURATOM del H2020, y presentado las diferentes oportunidades de financiación del sector nuclear con fondos europeos.

- Se ha realizado un informe de resultados de los objetivos definidos en el Plan 2014-2015,

- Se han definido objetivos de la Plataforma para el bienio 2016-2017.
De acuerdo con los objetivos definidos para el bienio 2014-2015, en 2016 se ha continuado desarrollando un amplio programa de refuerzo de las relaciones institucionales y de ampliación de los contactos de CEIDEN, tanto a nivel nacional como internacional.

Durante el año 2016 también se ha continuado incrementando el contacto con los miembros del CEIDEN a través de la página web, mediante comunicaciones periódicas de eventos relacionados con el sector, del propio CEIDEN, etc. Adicionalmente, se han incrementado los contactos con otras plataformas tecnológicas, tanto del sector energético, como plataformas horizontales (materales avanzados). Se ha establecido un Comité de Coordinación de Plataformas Tecnológicas del Ámbito Energético, con su propia página web http://energyfromspain.com/

Información adicional sobre los proyectos y actividades de esta plataforma se puede encontrar en su página web (www.ceiden.com).

4.7. NORMATIVA APROBADA Y EN ELABORACIÓN

Normativa nacional en elaboración

- Orden Ministerial por la que se regula la desclasificación de los materiales residuales generados en instalaciones nucleares.

El CSN ha propuesto al antiguo Ministerio de Industria, Energía y Turismo este proyecto de Orden, que tiene como objeto establecer los criterios necesarios para una adecuada gestión de los materiales residuales sólidos, procedentes de las instalaciones nucleares en operación o en desmantelamiento, que, por su baja contaminación radiactiva, pueden ser gestionados por vías convencionales.

Los criterios radiológicos que se establecen en esta Orden para que materiales residuales procedentes de instalaciones nucleares puedan gestionarse por las vías convencionales de eliminación, reciclado o reutilización, son los fijados en la Directiva 2013/59 Euratom del Consejo, de 5 de diciembre de 2013, por la que se establecen las normas de seguridad básicas para la protección contra los peligros derivados de la exposición a las radiaciones ionizantes.

- Trasposición de la Directiva 2013/59/EURATOM por la que se establecen normas de seguridad básicas para la protección contra los peligros derivados de la exposición a radiaciones ionizantes, y se derogan las Directivas 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom y 2003/122/Euratom.

Esta Directiva, que ha de ser traspuesta al ordenamiento jurídico nacional antes del 6 de febrero de 2018, deroga cinco directivas anteriores sobre esta materia, para unificar en un único instrumento jurídico comunitario la normativa básica de protección radiológica ocupacional, médica y del público, habida cuenta de los avances científicos que, desde principios de los 90, ha habido en la materia, adaptando la normativa europea a las recomendaciones básicas de ICRP-103.
Será de aplicación a cualquier situación de exposición planificada, existente o de emergencia, que implique un riesgo de exposición a radiaciones ionizantes, estableciendo límites de dosis teniendo en cuenta los principios generales de protección radiológica. Se ocupa también de las exposiciones debidas a la radiación natural (incluyendo NORM: Naturally-Occurring Radioactive Materials y Radón) y establece requisitos de información, formación y educación en materia de protección radiológica. Asimismo, establece disposiciones para que los Estados miembros adopten medidas para mejorar la sensibilización general sobre la existencia y peligro de fuentes huérfanas, así como para asegurar sistemas para su recuperación, gestión y control. Dada la amplitud de materias que regula esta Directiva, el plazo de trasposición se ha fijado en 4 años.

El vigente ordenamiento jurídico español, que incorporaba las directivas derogadas, ya trasponía, parcialmente, la Directiva 2013/59/Euratom mediante la siguiente normativa:

- Real Decreto 413/1997, de 21 de marzo, sobre protección operacional de los trabajadores externos con riesgo de exposición a radiaciones ionizantes por intervención en zona controlada (transposición de la Directiva 90/641/Euratom, relativa a la protección operacional de los trabajadores exteriores con riesgo de exposición a radiaciones ionizantes por intervención en zona controlada).

- Real Decreto 229/2006, de 24 de febrero, sobre el control de fuentes radiactivas encapsuladas de alta actividad y fuentes huérfanas (transposición de la Directiva 2003/122/Euratom, sobre el control de las fuentes radiactivas selladas de actividad elevada y de las fuentes huérfanas).

- Resolución de 20 de octubre de 1999, de la Subsecretaría, por la que se dispone la publicación del Acuerdo del Consejo de Ministros de 1 de octubre de 1999, relativo a la información del público sobre medidas de protección sanitaria aplicables y sobre el comportamiento a seguir en caso de emergencia radiológica (transposición de la Directiva 89/618/Euratom, relativa a la información a la población sobre las medidas aplicables y sobre el comportamiento a seguir en caso de Emergencia Radiológica).

- Real Decreto 783/2001, de 6 de julio, por el que se aprueba el Reglamento sobre protección sanitaria contra radiaciones ionizantes (transposición de la Directiva 96/29/Euratom, por la que se establecen las normas básicas relativas a la protección sanitaria de los trabajadores y de la población contra los riesgos que resultan de las radiaciones ionizantes).

- Real Decreto 1566/1998, de 17 de julio, por el que se establecen los criterios de calidad en radioterapia; Real Decreto 1976/1999, de 23 de diciembre, por el que se establecen los criterios de calidad en radiodiagnóstico y Real Decreto 1841/1997, de 5 de diciembre, por el que se establecen los criterios de calidad en medicina nuclear (transposición de la Directiva 97/43/Euratom, relativa a la protección de la salud frente a los riesgos derivados de las radiaciones ionizantes en exposiciones médicas).
Habida cuenta de la diversidad de las materias que aborda la nueva Directiva, competencia de distintos ministerios, se ha optado por la creación de un grupo de coordinación interministerial conformado por Ministerio de Energía, Turismo y Agenda Digital (MINETAD), y por los Ministerios encargados de Sanidad, Empleo, Fomento e Interior, así como por el CSN, siendo responsable cada ministerio de proponer bien un texto de enmienda o bien uno ex-novo que incorpore plenamente la Directiva al ordenamiento jurídico español.

- **Trasposición de la Directiva 2014/87/EURATOM por la que se modifica la Directiva 2009/71/Euratom, por la que se establece un marco comunitario para la seguridad nuclear de las instalaciones nucleares.**

La Directiva 2014/87/Euratom del Consejo, que ha de ser traspuesta al ordenamiento jurídico nacional con anterioridad al 15 de agosto de 2017, modifica la Directiva 2009/71/Euratom, reforzando el marco regulador europeo en materia de seguridad nuclear, tras el accidente en la central nuclear de Fukushima Daiichi, en marzo de 2011.

En concreto, el artículo 4.1.b de dicha Directiva establece que los Estados miembros establecerán y mantendrán un marco legislativo, reglamentario y organizativo nacional para la seguridad nuclear de las instalaciones nucleares, que prevea los requisitos nacionales de seguridad nuclear que abarquen todas las etapas del ciclo de vida de las instalaciones nucleares.

En el caso español, la Ley 25/1964, de 29 de abril, sobre energía nuclear, constituye el marco legal que establece los principios y requisitos básicos en seguridad nuclear de estas instalaciones, mientras que la Ley 15/1980, de 22 de abril, de creación del Consejo de Seguridad Nuclear, consagra a este Organismo como la única autoridad competente en España en dicha materia. El CSN ha venido desarrollando y regulando la seguridad nuclear de las instalaciones nucleares por medio de distintas Instrucciones que tienen carácter vinculante.

La existencia de este marco legal, junto con el marco reglamentario constituido por el Reglamento sobre instalaciones nucleares y radiactivas, hizo que, en su día, no fuera necesaria la trasposición de la Directiva 2009/71/Euratom, que ahora la Directiva 2014/87/Euratom viene a modificar en algunos aspectos significativos.

En este sentido, esta última Directiva establece que todas las fases de la vida de una instalación tendrán como objetivo la prevención de accidentes y, en caso de que estos se produzcan, la atenuación de sus consecuencias, y evitar: a) emisiones radiactivas tempranas que necesitaran medidas de emergencia fuera del emplazamiento pero sin disponer de tiempo suficiente para aplicarlas y b) grandes emisiones radiactivas que necesitaran medidas de protección de la población que no podrían estar limitadas en el tiempo o en el espacio. Este objetivo de seguridad ha de exigirse a las nuevas instalaciones y ser considerado como referencial, para la aplicación de mejoras, en el caso de las ya existentes.

Asimismo, la nueva Directiva ha introducido otros cambios respecto de la Directiva anterior, tanto
en el marco como en la autoridad reguladora, reforzando aspectos tales como la independencia efectiva, la adecuada disponibilidad de recursos humanos y financieros, la transparencia o la prevención de conflictos de intereses, entre otros.

Adicionalmente, establece notables requisitos a los titulares, como la responsabilidad del titular no delegable, el refuerzo de los procesos que conllevan la demostración de la seguridad (procesos de licenciamiento y Revisiones Periódicas de Seguridad), un sistema de gestión orientado a la seguridad, el refuerzo de la cultura de seguridad, el refuerzo de las estructuras y medios necesarios para la gestión de emergencias «in situ» y la coordinación para la gestión exterior, la disponibilidad de los adecuados recursos financieros y humanos, la cualificación del personal de la plantilla y del personal subcontratado, la formación, el refuerzo del concepto de defensa en profundidad, o el énfasis en la notificación temprana de sucesos.

Por lo que se refiere al Estado miembro, la Directiva mantiene la obligación establecida en la Directiva 2009/71/Euratom de realizar, al menos una vez cada 10 años, una autoevaluación de su marco nacional y autoridades reguladoras competentes, invitando a una revisión internacional por homólogos de estas materias al objeto de mejorar constantemente la seguridad nuclear y añade la obligación de realizar una revisión inter-pares sobre un «aspecto específico relacionado con la seguridad», al menos una vez cada seis años, y también siempre que un accidente provoque situaciones que requieran medidas de emergencia fuera del emplazamiento.

En todo caso, aunque el marco normativo español ya incorpora, en gran medida, los distintos requisitos exigidos por la Directiva 2014/87/Euratom, no se disponía de una norma específica de carácter reglamentario sobre la seguridad nuclear de las instalaciones nucleares, mientras que sí se han regulado por medio de reales decretos otras materias de este ámbito, tales como la protección radiológica (Reglamento sobre protección sanitaria contra radiaciones ionizantes, aprobado por RD 783/2001), la gestión de los residuos radiactivos (RD 102/2014, para la gestión responsable y segura del combustible nuclear gastado y los residuos radiactivos), la protección física (RD 1308/2011, sobre protección física de las instalaciones y los materiales nucleares, y de las fuentes radiactivas) y los procesos de licenciamiento de dichas instalaciones (Reglamento sobre instalaciones nucleares y radiactivas, aprobado por RD 1836/1999).

Asimismo, se han identificado algunos aspectos de la Directiva no recogidos en nuestro ordenamiento jurídico que se considera necesario trasponer, incorporándolos, junto con algunos otros procedentes de distintas Instrucciones del CSN, a un proyecto de Reglamento sobre seguridad nuclear en instalaciones nucleares, obteniendo así un texto unificado y con rango de real decreto.

El punto de partida para la elaboración de este proyecto ha sido, además de la Directiva 2014/87/Euratom, la Instrucción IS-26 del CSN sobre principios básicos de seguridad nuclear aplicables a las instalaciones nucleares, de 16 de junio de 2010 que, actualmente, es una de las normas reglamentarias que traspone la Directiva 2009/71/Euratom.
El citado proyecto ha sido elaborado por un grupo de trabajo formado por representantes del MINETAD y del CSN y, con fecha 21 de septiembre de 2016, el Pleno del Consejo de Seguridad Nuclear acordó tomar conocimiento del texto y su remisión al MINETAD, el cual comenzó su tramitación con fecha 26 de septiembre de 2016.

Con fecha 20 de diciembre de 2016, la propuesta normativa fue publicada en la página web del MINETAD y sometida, posteriormente, a los trámites de audiencia a los interesados y de participación pública, que se dieron por concluidos en marzo de 2017.

Normativa comunitaria aprobada

- Reglamento (Euratom) 2016/52 del Consejo, de 15 de enero de 2016, por el que se establecen tolerancias máximas de contaminación radiactiva de los alimentos y los piensos tras un accidente nuclear o cualquier otro caso de emergencia radiológica, y se derogan el Reglamento (Euratom) nº 3954/87 del Consejo y los Reglamentos (Euratom) nº 944/89 y (Euratom) nº 770/90 de la Comisión.

Se trata de un Reglamento que tiene por objeto la refundición de los tres Reglamentos vigentes con anterioridad (Reglamentos Euratom 3954/87, 944/89 y 770/90), estableciendo el procedimiento por el cual la Comisión, tras recibir notificación de un accidente nuclear, emitirá un reglamento de implementación declarando vigentes unos límites máximos de contaminación en alimentos y piensos importados desde el país afectado. Dichos niveles deberán ser revisados periódicamente, al menos cada tres meses, en función de la evolución de los niveles de contaminación efectivamente medidos.

El texto, que fue aprobado por el Consejo de la UE en diciembre de 2014, fue remitido al Coreper y al Consejo para su adopción formal una vez oído el Parlamento Europeo. Dicho Reglamento, una vez traducido a las diversas lenguas oficiales, se publicó en el Diario Oficial de la UE el 20 de enero de 2016.

Normativa comunitaria en elaboración

- Modificación de los Reglamentos 2587/1999 del Consejo y 1209/2000 de la Comisión por los que se desarrolla el artículo 41 del Tratado constitutivo de la Comunidad Europea de la Energía Atómica (Euratom).

El Reglamento 2587/1999 del Consejo, relativo a la definición de los proyectos de inversión que deberán comunicarse a la Comisión de conformidad con el artículo 41 del Tratado Euratom, tiene por objetivo desarrollar la obligación de notificar a la Comisión determinados proyectos de inversión cuando el coste de dicho proyecto exceda determinadas cantidades definidas en el Reglamento.

Por otra parte, y de forma complementaria, el Reglamento 1209/2000 de la Comisión, por el que se determinan los procedimientos de ejecución de la obligación de comunicación establecida en el artículo 41 del Tratado Euratom, tiene por objetivo...
especificar la información que debe notificarse, para cada tipo de proyecto de inversión, y proporciona un modelo de formulario para ello.

La Comisión está preparando una propuesta normativa que modifique los mencionados reglamentos con el objetivo de simplificar la carga administrativa que generan. Para ello, el 4 de noviembre de 2015, anunció la apertura de un procedimiento de consulta pública con plazo hasta el 25 de enero de 2016. Finalizado el plazo, la Comisión sigue preparando internamente su propuesta de reglamento, la cual debe pasar procesos de revisión internos.

4.8. APLICACIÓN DE SALVAGUARDIAS INTEGRADAS A LAS INSTALACIONES NUCLEARES ESPAÑOLAS

Por ser susceptible de ser utilizado para fines no pacíficos, el material nuclear debe ser objeto de particular protección, entendiéndose por «salvaguardias» al conjunto de medidas establecidas para detectar la desviación de los materiales nucleares para usos no declarados.

Las salvaguardias nucleares las ejercen los Organismos internacionales que tienen asignadas tales competencias en virtud de los compromisos internacionales contraídos por los Estados Parte. En el ámbito de la UE se aplican dos sistemas de salvaguardias en paralelo:

- Salvaguardias de EURATOM: derivan de las obligaciones que se establecen en el Capítu-

lo VII del Tratado EURATOM (Control de seguridad), en virtud de las cuales los Estados miembros deben declarar el material nuclear y el uso previsto del mismo. Las salvaguardias de EURATOM son aplicadas por la Comisión Europea.

- Salvaguardias del Organismo Internacional de Energía Atómica (OIEA), de Naciones Unidas: derivan de los compromisos contraídos como parte contratante del Tratado sobre la No Proliferación de las Armas Nucleares (TPN). Este Tratado obliga a suscribir un acuerdo con el OIEA para la aplicación de su sistema de salvaguardias a todas las actividades en las que se manejan materiales nucleares. Los Estados miembros de la UE no poseedores de armas nucleares han suscrito con el OIEA un Acuerdo de Salvaguardias conjunto (INFCIRC/193), cuyas medidas las aplican los inspectores de este Organismo de manera coordinada con las derivadas del Tratado EURATOM. Este acuerdo se complementó en abril de 2004 con la entrada en vigor de un Protocolo Adicional que amplía el ámbito de aplicación de las salvaguardias y otorga a los inspectores del OIEA derechos de acceso adicionales a las instalaciones.

En los últimos años, tanto el OIEA como la Comisión Europea han venido impulsando una reforma de sus respectivos sistemas de salvaguardias, con el objetivo de mejorar su eficiencia y eficacia.

Para los Estados que disponen de los que se conocen como Acuerdos de Salvaguardias amplios y que además tienen en vigor un Protocolo Adicional, tal como ocurre en los Estados miembros
de la UE, el objetivo del OIEA ha venido siendo aprovechar al máximo el marco jurídico vigente, y tener debidamente en cuenta la eficacia del Sistema Comunitario de salvaguardias. Una mayor utilización por parte del OIEA de los resultados de la Comisión podría contribuir significativamente a una mayor eficacia de las salvaguardias, así como al uso más eficiente de los recursos en ambos lados.

A finales de 2016, había en España 26 instalaciones sometidas a salvaguardias del OIEA, entre las que se incluyen los 8 reactores nucleares existentes, las instalaciones de almacenamiento de combustible gastado en los emplazamientos de las centrales (ATIs), la fábrica de elementos combustibles en Juzbado, la instalación de almacenamiento de residuos radiactivos de media y baja actividad de «El Cabril», la instalación del CIEMAT en Madrid y varias instalaciones radiactivas que emplean fuentes con uranio empobrecido en su blindaje. Durante el año 2016, estas instalaciones fueron sometidas a un total de 54 inspecciones de salvaguardias que incluyen, entre otras, las inspecciones efectuadas en las recargas de combustible en las centrales nucleares y las asociadas a las cargas de los contenedores y su traslado a los ATIs.

4.9. PROTECCIÓN FÍSICA DE LAS INSTALACIONES Y LOS MATERIALES NUCLEARES Y DE LAS FUENTES RADIOACTIVAS

La protección física de las instalaciones y los materiales nucleares, y de las fuentes radiactivas, tiene gran importancia para la protección de la población y del medio ambiente y para la
La aplicación de la Convención y su Enmienda en nuestro país se lleva a cabo mediante el Real Decreto 1308/2011, de 26 de septiembre, sobre protección física de las instalaciones y los materiales nucleares y de las fuentes radiactivas, y por su modificación, el Real Decreto 1086/2015, de 4 de diciembre.

En relación también con este ámbito de seguridad física nuclear, el 29 de enero de 2007 España ratiﬁcó el Convenio Internacional para la represión de los actos de terrorismo nuclear, hecho en Nueva York el 13 de abril de 2005, en el que, entre otras cosas, como Estado Parte se compromete a tener en cuenta las recomendaciones sobre protección física y las normas sobre salud y seguridad publicadas por el OIEA.

Adicionalmente a lo anterior, en el ámbito internacional se han adoptado una serie de iniciativas con el fin de incrementar el control sobre este tipo de materiales y evitar que puedan ser utilizados en fines ilícitos, entre las que destacan la Resolución 1540 de 2004, del Consejo de Seguridad de las Naciones Unidas, relativa a la no proliferación de armas de destrucción masiva, que ha sido copatrocinada por España y que establece nuevas responsabilidades para evitar el desvío de materiales nucleares y radiactivos a fines delictivos, especialmente impidiendo que queden bajo control de agentes no estatales.

Asimismo, desde 2007 España está plenamente integrada en la Iniciativa Global para Combatir el Terrorismo Nuclear, puesta en marcha tras la Cumbre del G-8 celebrada en junio de 2006, con el objetivo de diseñar acciones preventivas contra
el terrorismo nuclear, reforzando las capacidades para prevenir la adquisición de materiales y de conocimientos en materia nuclear por parte de terroristas y mejorar la capacidad de respuesta de los países ante situaciones provocadas por este tipo de terrorismo.

Por otra parte, desde el año 2010 se celebran bianualmente Cumbres de Seguridad Física Nuclear a nivel internacional, con la participación de los Jefes de Estado de los países asistentes. En el año 2016 dicha Cumbre tuvo lugar en Washington.

En cumplimiento del artículo 30 del Real Decreto 1308/2011, de 26 de septiembre, sobre protección física de las instalaciones y los materiales nucleares, y de las fuentes radioactivas (en su redacción dada por el Real Decreto 1086/2015, de 4 de diciembre, que lo modifica), desde junio de 2016 se encuentra implantada permanentemente la Unidad de Respuesta de Guardia Civil en la Central Nuclear de Trillo. Desde dicha fecha se han ido desarrollando los procedimientos de coordinación y cooperación entre dicha Unidad y el titular de la citada instalación. Se prevé que para finales del año 2018 se habrá completado el despliegue e implantación de las Unidades de Respuesta en todas las centrales nucleares españolas en operación.

Adicionalmente, cumpliendo también el Real Decreto 1086/2015, se han integrado en los Planes de Protección Física de las centrales nucleares los Planes de Protección Específicos previstos en el Reglamento de protección de infraestructuras críticas, aprobado por Real Decreto 704/2011, de 20 de mayo.

4.10. ACTIVIDAD DE ORGANISMOS INTERNACIONALES

La actividad nuclear en el ámbito internacional se centra, básicamente, en tres organizaciones internacionales:

- Comunidad Europea de Energía Atómica (EURATOM-UE),
- Agencia de Energía Nuclear (NEA-OCDE), y
- Organismo Internacional de Energía Atómica (OIEA-Naciones Unidas).

Las actuaciones relacionadas con dichas organizaciones se han canalizado principalmente a través de la participación en los grupos de trabajo y comités que se indican a continuación, junto a las principales decisiones o actividades desarrolladas por los mismos durante 2016.

Comunidad Europea de Energía Atómica (Euratom)

En el ámbito del Tratado Euratom, los grupos y comités más relevantes en materia de energía nuclear son los siguientes:

- Grupo de Cuestiones Atómicas (AQG).

El Grupo de Cuestiones Atómicas es un grupo de trabajo del Consejo de la UE que se reúne periódicamente en Bruselas para discutir los principales temas en el ámbito de la energía nuclear en la UE. Los principales asuntos tratados en este grupo durante el 2016 han sido:
a) La elaboración del Programa Nuclear Ilustrativo Europeo (PINC).

b) La próxima modificación de los reglamentos que desarrollan el artículo 41 del Tratado constitutivo de la Comunidad Europea de la Energía Atómica.

c) La elaboración de una Recomendación de la Comisión sobre la aplicación del artículo 103 del Tratado constitutivo de la Comunidad Europea de la Energía Atómica, en virtud del cual se establece la obligación de notificar a la Comisión acuerdos entre EE.MM. y terceros países en el ámbito nuclear.

d) La redacción de una Nota de la Presidencia relativa a la seguridad de suministro de radioisótopos médicos.

e) La redacción de una Nota de la Presidencia relativa a la reducción de la carga administrativa a las empresas derivada de los sistemas legales Euratom y OIEA.

f) La negociación de la extensión del acuerdo Euratom-KEDO (Korean Peninsula Energy Development Organization).

g) La negociación de acuerdos entre Euratom y terceros países: Canadá, Corea del Sur, etc.

h) La elaboración y publicación, por parte de la Comisión, del Informe sobre el programa de asistencia al desmantelamiento de instalaciones nucleares (NDAP) en Bulgaria, Eslovaquia y Lituania.

i) La elaboración y publicación, por parte del Tribunal de Cuentas Europeo, del Informe sobre la asistencia financiera europea al desmantelamiento de centrales nucleares en Bulgaria, Lituania y Eslovaquia.

j) La elaboración y publicación, por parte de la Comisión, del Informe Euratom sobre el cumplimiento de sus obligaciones bajo la Convención de Seguridad Nuclear.

k) Presentación del Informe anual de la Agencia de Aprovisionamiento Euratom.

l) El seguimiento de las tareas relacionadas con la elaboración de una guía de buenas prácticas para la correcta aplicación de la Convención de Espoo en aquellas actividades relacionadas con la energía nuclear.

- **Foro Europeo de Energía Nuclear (ENEF).**

En marzo de 2007, el Consejo Europeo adoptó un Plan de Acción Europeo relativo a una Política Energética para Europa para el período 2007-2009, en el que, en relación con la energía nuclear, se propuso la creación de un Grupo de alto nivel en materia de seguridad nuclear y gestión segura del combustible gastado y los residuos radiactivos (denominado ENSREG), y el establecimiento de un Foro Europeo de Energía Nuclear (denominado ENEF), concebido como un foro en el que se lleve a cabo una amplia discusión entre los más relevantes representantes de los colectivos interesados (stakeholders) sobre las oportunidades y los riesgos de la energía nuclear.
Desde entonces, ENEF ha venido desarrollando sus funciones por medio de 3 grupos de trabajo, que se venían reuniendo a lo largo del año para elaborar conclusiones respecto de los riesgos, oportunidades y transparencia, relativos a la energía nuclear, y exponiendo sus resultados en las sesiones plenarias del ENEF, que se celebran una vez al año, alternativamente, en Praga y en Bratislava. Sus exposiciones servían de punto de partida para mantener un debate abierto, cuyas conclusiones se resumen al finalizar la reunión. ENEF trabaja en colaboración con otros grupos como ENSREG o la Sustainable Nuclear Energy Technology Platform (SNETP).

Hasta el momento se han celebrado once reuniones plenarias del ENEF, la última de las cuales tuvo lugar en Bratislava en octubre de 2016. En dichas reuniones participaron altas personalidades políticas europeas, así como representantes de la industria y de las principales organizaciones ecologistas con mayor implantación en la UE.

Sin embargo, desde febrero de 2014, ENEF está inmerso en un proceso de re-definición interna, buscando una mayor integración y cooperación con otros foros, principalmente el Foro de Berlín (Foro internacional de energía) que tuvo lugar en junio de 2015. Durante el último año no se han mantenido reuniones de los grupos de trabajo y existe una cierta incertidumbre respecto de su papel en la próxima sesión plenaria.

La duodécima reunión plenaria del ENEF tendrá lugar en Praga los días 22 y 23 de mayo de 2017, según ha confirmado a los EEMM la Representación Permanente de la República Checa ante la UE.

- Comité Consultivo de la Agencia de Aprovisionamiento de EURATOM.

El Tratado EURATOM prevé la creación de esta Agencia y establece entre sus tareas y obligaciones la de velar por el abastecimiento regular y equitativo en materiales nucleares de los usuarios de la UE. Su Comité Consultivo tiene por objeto asistir a la Agencia en el desarrollo de sus funciones, así como aportar información, análisis y una opinión cualificada.

El informe de esta Agencia relativo a 2015 (aún no se encuentra disponible el correspondiente a 2016), en el que se resumen las actividades de la Agencia, su programa de trabajo, así como la situación del mercado mundial y europeo de combustible nuclear, es público y se encuentra disponible en la página web de la Agencia.

- Cooperación exterior en materia de seguridad nuclear (Instrumento INSC).

El Instrumento de Cooperación en materia de Seguridad Nuclear (INSC) se estableció por medio del Reglamento del Consejo 300/2007/EURATOM, con objeto de prestar asistencia a terceros países en los ámbitos de la seguridad nuclear, la protección radiológica o la aplicación efectiva de salvaguardias. Este instrumento es el heredero natural de otros programas anteriores que concedían

1. http://www.cvent.com/d/75q2wt

Mientras el Reglamento determina el marco general de la asistencia, las líneas de actuación se rigen por una Estrategia y unos Programas Indicativos (PI) normalmente tri-anuales, que son concretados, posteriormente, por Programas de Acción anuales. Su propuesta corresponde a la Comisión, pero está sujeta a la opinión, por mayoría cualificada, de un Comité formado por representantes de los EEMM.

Modalidad de la asistencia: Con carácter general, cabe hablar de dos tipos de proyectos, atendiendo al beneficiario, los de apoyo a operador, que salen a concurso público, y los de apoyo a regulador, que se adjudican de forma directa, inclinándose la balanza en favor de estos últimos.

Atendiendo al proyecto en sí, el Instrumento promueve el desarrollo de la cultura de seguridad, del marco regulator, la aplicación efectiva de salvaguardias, la planificación de emergencias, la cooperación internacional o la gestión responsable y segura del combustible gastado, los residuos radiactivos y el desmantelamiento.

Asistencia prevista durante el periodo 2014 a 2020: La asistencia financiera, económica y técnica prevista por el Reglamento 237/2014 para el periodo 2014 a 2020, se ha visto reducida hasta los 225 M€.

La Estrategia acordada prevé destinar en torno al 50% de dicha asistencia a la promoción de la cultura efectiva de seguridad, el 35% a gestión segura de combustible gastado y residuos radiactivos, así como a desmantelamiento y actuaciones de remediación de emplazamientos, y un 10% al establecimiento de marcos para la aplicación efectiva de salvaguardias.

El Plan de Acción multianual señala, entre las primeras líneas de actuación, la cooperación con países africanos en las actividades de la minería del uranio, con Asia central en la remediaciación de antiguas minas y la gestión de sus residuos, el fortalecimiento de los organismos reguladores en Iberoamérica o la cooperación con las actividades de recuperación de Chernóbil, así como la coordinación con la red de Centros de Excelencia CBRN (Chemical, Biological, Radiological and Nuclear).

Mecanismos de evaluación: Este Reglamento ha incorporado, además, unos indicadores genéricos que permitirán evaluar la efficacia de la asistencia prestada (el número e importancia de problemas detectados durante la ejecución de la cooperación; el estado de desarrollo de las estrategias de clausura, de gestión de combustible gastado y residuos
La cooperación prestada por la UE en el ámbito de la seguridad nuclear y las salvaguardias en virtud de este Reglamento no está encaminada a fomentar la energía nuclear y, por lo tanto, no debe interpretarse como una medida para fomentar esta fuente de energía en terceros países.

Prioridades en la asignación de asistencia: A fin de crear las condiciones de seguridad necesarias para eliminar los riesgos para la salud de los ciudadanos, la cooperación se dirigirá principalmente a los reguladores nucleares y sus organizaciones de apoyo técnico. El objetivo de dicha cooperación consiste en garantizar su competencia técnica y su independencia, y en reforzar el marco regulatorio en lo tocante a actividades de concesión de licencias, incluida la revisión y el seguimiento de evaluaciones de riesgos y de seguridad efectivas y completas («pruebas de resistencia»).

Entre el resto de prioridades de los programas de cooperación que se desarrollarán en el contexto del Reglamento 237/2014, se incluirán las siguientes:

- el desarrollo y aplicación de estrategias responsables y marcos para una gestión responsable y segura del combustible gastado y los residuos radiactivos;
- la clausura de instalaciones existentes, la descontaminación de antigas centrales nucleares y de instalaciones heredadas relacionadas con la extracción de uranio, así como la recuperación y gestión de objetos y materiales radiactivos sumergidos en el mar, allí donde estos supongan un peligro para la ciudadanía.
Se contemplará la cooperación con operadores de centrales de energía nuclear de terceros países, en casos muy específicos. Dicha cooperación excluirá el suministro de equipamiento.

Distribución de la asistencia prestada según regiones (2014-2016): Hasta la fecha, la asistencia prestada con cargo al Instrumento desde que entró en vigor el Reglamento 237/2014, ha sido de unos 159 M€, con Asia Central y Europa del Este como principales regiones destinatarias, más aún si se incluyen las contribuciones al Fondo para el sarcófago de Chernóbil (CSF) en Ucrania.

Por lo que se refiere a la asistencia prestada por tipo de proyecto, las contribuciones al CSF, a la cultura de seguridad y a la gestión de residuos radiactivos copan la mayor parte de la asistencia prestada.

A continuación, se recoge la participación española en proyectos con cargo a este Instrumento durante el año 2016.

- Por lo que se refiere a la cooperación con Ucrania, Empresarios Agrupados (EE.AA.) consiguió, en 2015, la adjudicación de dos contratos en los que continúa trabajando, cuya duración se ha establecido en 3 años. En el primero de ellos, EE.AA. lidera el consorcio formado con dos empresas francesas con objeto de mejorar la seguridad y la resistencia de las centrales nucleares ucranianas mediante el cálculo del comportamiento de estructuras en caso de evento externo (terremoto, tornado, impacto).

GRÁFICO 4.2. DISTRIBUCIÓN POR TIPO DE PROYECTO DE LA ASISTENCIA PRESTADA POR EL INSC

1: Fomento de una cultura de seguridad nuclear eficaz y aplicación de los niveles más altos de seguridad nuclear y mejora constante de la seguridad nuclear. 44,70M€. 26%.
2: Gestión responsable y segura del combustible nuclear gastado y de los residuos radiactivos, clausura y descontaminación de antiguas centrales e instalaciones nucleares. 34,68M€. 22%.
3: Establecimiento de marcos y metodologías para aplicar salvaguardias eficaces y efectivas al material nuclear en terceros países. 5,63M€. 3%.
4: Global allocation INSC. 7,46M€. 5%.
5: CSF. 70,00M€. 44%.
y el diseño del sistema de monitorización de edificios, por un total de 1,5 M€. En el segundo caso, EE.AA. lidera el consorcio con una empresa ucraniana relativo al diseño básico de un edificio de tratamiento de residuos radioactivos (apoyo para la obtención de licencia para la operación de repositorios de residuos radioactivos) por un total de unos 1,7 M€.

Por su parte, IDOM consiguió la adjudicación de un proyecto por valor de 950.000 € para la definición del plan de mejora del programa de formación sobre desmantelamiento y gestión de residuos radioactivos de Ucrania. Es también reseñable la adjudicación del diseño y la compra de equipos de la nueva sala de control de emergencias que se está instalando en la central nuclear eslovena de Krsko como medida de refuerzo de la seguridad post-Fukushima.

Según se recoge en su Estatuto, la NEA tiene por objeto un mayor desarrollo en el uso de la energía nuclear, incluyendo otras aplicaciones que utilizan radiaciones ionizantes para fines pacíficos, a través de la cooperación internacional. A tales efectos, la NEA promueve el desarrollo de estudios técnicos y económicos y consultas sobre los programas y proyectos en que participan los Estados, relativos a I+D o a la industria de la energía nuclear. Dentro de los campos a los que contribuye, cabe destacar la protección radiológica, la seguridad nuclear, la responsabilidad por daños nucleares a terceros o la eliminación de los obstáculos al comercio internacional de la industria nuclear.

Su Estatuto confía las tareas encomendadas a la NEA a su Comité de Dirección, a los grupos creados por éste y a la Secretaría.

• Comité de Dirección.

Está formado por los representantes de los Estados miembros, asistidos para sus funciones por la Secretaría. Se reúne dos veces al año, toma las decisiones de carácter estratégico, tales como la aprobación del Presupuesto o la adopción del Plan Estratégico, y revisa los resultados de los distintos grupos de trabajo.

En 2016, entre otras decisiones, este Comité aprobó el Programa de trabajo y los Presupuestos para el período 2017-2018, su Plan Estratégico 2017-2022, la Decisión y recomendación relativas a la aplicación del Convenio de París sobre responsabilidad civil por daño nuclear a instalaciones de almacenamiento definitivo de ciertos
SECTOR NUCLEAR

 tipos de residuos radiactivos de baja actividad o el lanzamiento de la iniciativa NEST (Nuclear education, skills and technology) para la formación, desarrollo de capacidades y entrenamiento de nuevos científicos e ingenieros en el mundo nuclear.

• Comité de Estudios Técnicos y Económicos para el Desarrollo de la Energía Nuclear y del Ciclo de Combustible (NDC).

Entre las funciones de este Comité se incluyen la evaluación de la potencial contribución futura de la energía nuclear al abastecimiento energético mundial; de las demandas y necesidades de suministro en las diferentes fases del ciclo del combustible nuclear; el análisis de las características técnicas y económicas del desarrollo de la energía nuclear y del ciclo del combustible; y la evaluación de las diferentes consecuencias técnicas y económicas de las distintas estrategias para el ciclo del combustible nuclear.

Durante 2016 el Comité ha trabajado en la elaboración de distintas publicaciones, tales como el informe bienal «Uranium 2016: Resources, Production and Demand», que es la 26ª edición del denominado «Red Book», publicación de referencia mundialmente reconocida, preparado conjuntamente por la NEA y el OIEA; la actualización del tradicional «Nuclear Energy Data 2016», que proporciona información oficial sobre los programas nucleares de los estados miembros de la NEA; o el informe «Costs of Decommissioning Nuclear Power Plants», sobre los costes de desmantelamiento de centrales nucleares y las incertidumbres asociadas a su estimación, así como la financiación de los mismos, en el que ha intervenido activamente ENRESA.

Continuaron los trabajos del grupo de expertos sobre «Costs of Nuclear Accidents, Liability Issues and their Impact on Electricity Costs», iniciado en 2013 y que no solo pretende efectuar un análisis sobre los costes de los accidentes pasados (Three Mile Island, Chernobyl, Fukushima Daiichi), sino también proporcionar una metodología para evaluación de costes y estimación de daños para distintos escenarios de accidentes. El informe final está previsto que se publique en el año 2017.

Por otra parte, en julio de 2015 se lanzó la iniciativa NL2050 «Nuclear Innovation 2050», que pretende evaluar los actuales planes de I+D y las infraestructuras existentes para su desarrollo, establecer prioridades en la I+D de fusión nuclear y fomentar su desarrollo mediante la cooperación entre agentes y Estados. España participa en esta iniciativa a través del CEIDEN. Durante el año 2016 esta actividad ha progresado gracias a la realización de reuniones en las que participaron numerosos expertos, que discutieron y analizaron las necesidades prioritarias de I+D para un amplio rango de tecnologías, tales como las de los reactores existentes y futuros, sus respectivos ciclos de combustible, la gestión de residuos radiactivos, el desmantelamiento de instalaciones y los nuevos usos de la energía y tecnología nucleares.

• Comité de Derecho Nuclear (NLC).

Este Comité constituye un foro de discusión sobre el desarrollo y armonización de la legislación en
los diferentes aspectos de la actividad nuclear, centrándose gran parte de sus esfuerzos en la interpretación, implementación, mejora y modernización de los regímenes de responsabilidad civil por daños nucleares, particularmente los derivados de los Convenios de París y complementario de Bruselas y sus revisiones, celebrados bajo los auspicios de la OCDE.

Dentro del programa regular del Comité, el principal asunto tratado es el relativo a los Convenios de París y Bruselas sobre responsabilidad civil por daños nucleares, y concretamente el estado de ratificación e implementación de los Protocolos de 2004, de enmienda de dichos Convenios. Si bien los Estados miembros realizan avances en la adaptación de sus legislaciones nacionales a dichos Protocolos, aún siguen poniéndose de manifiesto algunas dificultades existentes en relación con la cobertura por parte del mercado de seguros de determinados riesgos contemplados en el Protocolo de París de 2004, especialmente el aumento del periodo de reclamación de los daños personales de 10 a 30 años y, en algunos casos, los daños medioambientales. Estas cuestiones fueron también tema de discusión en las reuniones de las Partes Contratantes del Convenio de París, que se celebraron en marzo, junio y noviembre de 2016. No se espera que estos Protocolos entren en vigor antes del año 2018.

En el año 2016, el Comité se reunió en marzo y en noviembre. En la reunión de marzo, además de algunas presentaciones relativas a desarrollos legales en el ámbito de la energía nuclear por parte de países como Francia, Canadá o República Checa, y de las correspondientes a la Comisión Europea y al OIEA, se planteó la creación de grupos de trabajo dependientes del NLC para abordar cuestiones específicas como la responsabilidad civil en almacenes geológicos profundos, la responsabilidad civil en los transportes nucleares y un grupo específico de seguridad nuclear. Por su parte, en la reunión de noviembre, se aprobaron los mandatos de los grupos de trabajo propuestos en la reunión anterior, en los que España tiene participación. Asimismo, como en reuniones anteriores, en ambas reuniones se abordó la implementación de los Convenios de Aarhus y Espoo desde el punto de vista de las actividades nucleares, entre otras cuestiones.

Organismo Internacional de Energía Atómica (OIEA-Naciones Unidas)

• Conferencia General.

En ella se reúnen todos los Estados miembros una vez al año, y se debate la línea de conducta y el programa del Organismo. Examina y aprueba el presupuesto y el informe anual de la Junta de Gobernadores. Examina las peticiones de ingreso en el Organismo, y puede decidir la suspensión de un Estado miembro en caso de violación persistente del Estatuto. Elige nuevos miembros de la Junta de Gobernadores para remplazar a aquellos cuyo mandato haya terminado y aprueba el nombramiento del Director General que haya hecho la Junta de Gobernadores, cuando termina el mandato de aquel. También da su aprobación a los acuerdos que el Organismo pueda suscribir con otras organizaciones.
SECTOR NUCLEAR

La 60ª Conferencia General tuvo lugar del 26 al 30 de septiembre de 2016. En ella participaron unos 2,500 delegados de 155 Estados miembros, organismos internacionales, ONGs y medios de comunicación.

Entre los temas tratados en ella se incluyeron:

– Solicitudes de admisión como Estados Miembros del Organismo.

– Contribuciones al Fondo de Cooperación Técnica para 2017.

– Debate general e Informe Anual para 2015.

– Elección de Miembros de la Junta de Gobernadores.

– Estados financieros del Organismo correspondientes a 2015.

– Medidas para fortalecer la cooperación internacional en materia de seguridad nuclear, radiológica, del transporte y de los desechos.

– Seguridad física nuclear.

– Fortalecimiento de las actividades de cooperación técnica del Organismo.

– Fortalecimiento de las actividades del Organismo relacionadas con la ciencia, la tecnología y las aplicaciones nucleares.

– Fortalecimiento de la eficacia y aumento de la eficiencia del sistema de salvaguardias del Organismo.

– Aplicación del acuerdo de salvaguardias en relación con el TNP entre el Organismo y la República Popular Democrática de Corea.

– Aplicación de las salvaguardias del OIEA en el Oriente Medio.

Las resoluciones en relación con estos temas se pueden encontrar en la página web del OIEA³.

• Junta de Gobernadores.

Esta Junta es el órgano ejecutivo del Organismo y examina todas las cuestiones de importancia, incluyendo las peticiones de ingreso y el programa de actividades, el presupuesto y el informe anual. Está facultada para aprobar todos los acuerdos de salvaguardias, los proyectos importantes y las normas de seguridad. Por regla general se reúne cinco veces al año: marzo, junio, septiembre (antes y después de la Conferencia General) y noviembre.

Está compuesta por 35 miembros, de los que 13 son designados por la propia Junta, de acuerdo con el criterio de desarrollo alcanzado en tecnología nuclear, y 22 son elegidos por la Conferencia General, de acuerdo con el criterio de representación geográfica equitativa, con un mandato de dos años, eligiendo 11 cada año. El 25 de septiem-

³ http://www.iaea.org/

• Conferencia Internacional sobre Seguridad Física Nuclear: Compromisos y Medidas.

Esta segunda Conferencia Internacional sobre Seguridad Física Nuclear tuvo lugar en Viena del 5 a 9 de diciembre de 2016, como continuación de la anteriormente celebrada en el año 2013 que estuvo focalizada en intensificar los esfuerzos globales en la materia.

La finalidad de la Conferencia del año 2016 fue la de examinar las experiencias y los logros de la comunidad nacional e internacional, hasta dicha fecha, en el fortalecimiento de la seguridad física nuclear; mejorar el conocimiento de los enfoques actuales de la seguridad física nuclear en todo el mundo; identificar tendencias, y proporcionar un foro inclusivo en el que Ministros, encargados de la formulación de políticas, oficiales superiores y expertos en seguridad física nuclear pudieran formular e intercambiar opiniones sobre la orientación y prioridades futuras de la seguridad física nuclear y la manera en que estas podrían evolucionar.

La Conferencia incluyó dos segmentos diferenciados: una fase ministerial que se celebró el primer día de la Conferencia y concluyó con la aprobación de una Declaración Ministerial; y posteriormente un programa científico y técnico que incluía una sesión plenaria de apertura, seis debates de alto nivel sobre políticas, series de sesiones técnicas paralelas, y una sesión plenaria de clausura con un informe del Presidente de la Conferencia.

Fondos nucleares gestionados por el BERD

El Banco Europeo de Reconstrucción y Desarrollo (BERD) viene gestionando una serie de fondos internacionales cuyo ámbito está vinculado a la energía nuclear. En concreto, administra:

- la denominada Cuenta de Seguridad Nuclear, dirigida a financiar proyectos para mejorar la seguridad nuclear en Rusia y los Nuevos Países Independientes de la antigua esfera soviética;

- la denominada «Ventana Nuclear de la Dimensión Nórdica» de la UE, cuyo objeto es contribuir a la recuperación medioambiental de diferentes regiones del norte de Europa próximas a la UE, con contaminación radiactiva como consecuencia, sobre todo, de actividades militares realizadas en el pasado;

- el Fondo del Sarcófago de Chernóbil, cuyo objeto es la financiación del nuevo confinamiento de seguridad para la accidentada central nuclear ucraniana; y

- tres Fondos internacionales de ayuda al desmantelamiento de las centrales nucleares de Ignalina (Lituania), Kozloduy (Bulgaria) y Bohunice (Eslovaquia), cuyo desmantelamiento fue impuesto, por motivos de seguridad, por parte de las autoridades comunitarias como condición a la adhesión a la UE.

España es contribuyente directo a estos últimos cuatro fondos, y está representada en sus respectivos órganos de gobierno.
• Asamblea de contribuyentes al Fondo para la construcción del nuevo confinamiento de seguridad de la central nuclear de Chernóbil (CSF).

Este Fondo ha recibido contribuciones por valor de más de 1.590 M€ de 28 países contribuyentes (entre ellos, España, cuya contribución asciende a 5 M€) y de la UE, así como 17 países donantes.

El proyecto más importante que está siendo financiado consiste en la construcción de un nuevo confinamiento para la unidad 4. Esta estructura de acero, construida en dos mitades por sus grandes dimensiones (más de 100 m de alto y largo y más de 250 de ancho) tiene una doble finalidad. En un primer lugar tiene por objeto evitar la fuga de material radiactivo al exterior, especialmente en caso de colapso del sarcófago primitivo (object shelter), y en segundo permitir el desmantelamiento de las algunas estructuras de dicho sarcófago primitivo para evitar su colapso. Las dos mitades ya están construidas, levantadas hasta su altura final y unidas desde finales del 2014. El 14 de noviembre de 2016 comenzó el transporte del nuevo sarcófago hasta su posición final, justo encima del sarcófago primitivo, por lo que se espera que esté plenamente operativo a finales de 2017.

En todo caso, el coste final del proyecto (The Chernobyl Shelter Implementation Plan) será superior al previsto inicialmente (las estimaciones apuntan a los 2.150 M€), por lo que las futuras contribuciones de la Asamblea de donantes serán fundamentales.

– Por lo que se refiere a los Fondos de desmantelamiento, España ha realizado contribuciones por valor de 1,5 M€ para cada Fondo. Adicionalmente a los importantes retornos obtenidos en años anteriores, cabe destacar la siguiente participación de empresas españolas durante 2016:

– Empresarios Agrupados consiguió en 2015 la renovación, por un periodo de 3 años, del contrato de servicios de consultoría en la PMU (Project Management Unit) de la empresa estatal búlgara de gestión de residuos radiactivos para la construcción del repositorio nacional de almacenamiento definitivo de residuos radiactivos y el desmantelamiento de las unidades 1 a 4 de la central nuclear de Kozloduy, cuyo importe total asciende a los 16,7 M€.

– Por su parte, ENRESA finalizó con éxito sus compromisos contractuales en relación con el diseño conceptual y la evaluación de la seguridad para dicho almacenamiento.

– Por último, ENSA continúa trabajando en el proyecto de caracterización de resinas de la central de Kozloduy.

Adicionalmente a los Fondos mencionados, desde 2013 el BERD viene apoyando la mejora de los reactores nucleares ucranianos en línea con los estándares internacionales de seguridad por medio de un préstamo de 300 M€, al que hay que sumar una contribución de EURATOM de otros 300 M€ y de la propia Ucrania, de aproximadamente 800 M€, que permitirán alcanzar el coste total del...
proyecto estimado en 1.450 M€. Dependiendo del tipo de reactor, las mejoras podrían incluir hasta 87 medidas de seguridad relativas al diseño, la instrumentación y control o la gestión de accidentes, así como el fortalecimiento del papel y la independencia del Organismo regulador ucraniano. Hasta la fecha, se ha adjudicado el contrato de la Project Management Unit, a partir del cual se está gestionando la adjudicación por concurso de los distintos proyectos previstos.
5. SECTOR CARBÓN
5.1. SITUACIÓN ACTUAL

5.1.1. Panorámica general del sector

La producción nacional de carbón disminuyó en 2016 respecto a 2015 en torno a un 50%, concretamente, la de hulla y antracita se redujo alrededor de un 41%, y la de lignitos negros un 59%. Esta menoración se explica, en gran medida, por un menor funcionamiento de las central térmicas y la utilización de carbón almacenado en sus parques.

Si bien las producciones disminuyeron, las ayudas recibidas por las empresas mineras (unidades de producción) en 2016 de 25,7 millones de euros fueron sólo un 6,8% inferiores a los abonados en 2015. Esta circunstancia se debió a la incorporación de una nueva ayuda adicional, para paliar la pérdida de competitividad de los precios del carbón autóctono, provocada por el efecto de los bajos precios del carbón importado en 2015 respecto a los niveles del 2013, fecha en la que se firmó el Marco de Actuación para la Minería del Carbón y las Comarcas Mineras en el periodo 2013-2018. Debe tenerse presente que, con fecha 27 de mayo de 2016, fue aprobado por la Comisión Europea el Plan de Cierre del Reino de España para la Minería del Carbón no competitiva en el marco de la Decisión 2010/787/UE del Consejo, de 10 de diciembre de 2010 relativa a las ayudas estatales destinadas a facilitar el cierre de minas no competitivas hasta el 31 de diciembre de 2018.

Las unidades de producción de las compañías mineras del carbón que pretendan continuar su actividad extractiva a partir del 1 de enero de 2019, y hubieran recibido ayudas para compensar sus pérdidas de acuerdo con lo establecido en el artículo 3 de la mencionada Decisión Comunitaria, habrán de proceder a su devolución.

5.1.2. Demanda interior

El consumo primario de carbones, medido en Ktep, incluyendo gases siderúrgicos derivados, disminuyó un 10,3% en 2016 respecto al año anterior tal y como se desprende del cuadro 5.1.1. El consumo en el sector eléctrico cayó un 26%, correspondiendo una disminución del 31% al consumo de hulla y antracita, tanto de producción nacional como de importación y un 48% al consumo de lignito negro.

La tendencia del precio del carbón importado siguió transitiendo a la baja hasta el final del tercer trimestre del año, momento en el cual el precio aumentó cerca de un 65%, lo cual, unido a una mejora en la hidráulica y el mantenimiento de los niveles de participación en el mix de generación de las tecnologías renovables, especialmente la eólica, han provocado que el peso del carbón en el sistema eléctrico, se redujera en 2016. Como consecuencia de ello, el consumo final de carbones, medido en miles de toneladas, disminuyó en 2016, respecto al año anterior, un 19% para el caso del carbón importado y un 46% respecto del carbón autóctono.

El consumo de derivados del carbón en siderurgia se redujo un 8,4%. Por otro lado, el consumo del resto de sectores tiene cantidades más significativas que en los sectores anteriores (Cuadros 5.1.2 y 5.1.3).
CUADRO 5.1.1. BALANCE DE CARBÓN

PRODUCCIÓN INTERIOR:

<table>
<thead>
<tr>
<th>Año</th>
<th>Antracita</th>
<th>Hulla</th>
<th>Lignito Negro</th>
<th>TOTAL</th>
<th>Tasa de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>3.209</td>
<td>2.777</td>
<td>2.444</td>
<td>8.430</td>
<td>-21,5%</td>
</tr>
<tr>
<td>2011</td>
<td>2.487</td>
<td>1.775</td>
<td>2.359</td>
<td>6.621</td>
<td>-6,6%</td>
</tr>
<tr>
<td>2012</td>
<td>2.238</td>
<td>1.652</td>
<td>2.271</td>
<td>6.161</td>
<td>-6,6%</td>
</tr>
<tr>
<td>2013</td>
<td>762</td>
<td>1.780</td>
<td>1.826</td>
<td>4.368</td>
<td>-29,3%</td>
</tr>
<tr>
<td>2014</td>
<td>1.338</td>
<td>1.331</td>
<td>1.230</td>
<td>3.899</td>
<td>-10,7%</td>
</tr>
<tr>
<td>2015</td>
<td>1.120</td>
<td>601</td>
<td>1.772</td>
<td>3.493</td>
<td>-10,4%</td>
</tr>
<tr>
<td>2016</td>
<td>701</td>
<td>310</td>
<td>730</td>
<td>1.742</td>
<td>-50,1%</td>
</tr>
</tbody>
</table>

VARIACIÓN DE STOCKS (1):

<table>
<thead>
<tr>
<th>Año</th>
<th>Hulla y Antracita</th>
<th>Lignito negro</th>
<th>TOTAL</th>
<th>Tasa de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>879</td>
<td>-324</td>
<td>555</td>
<td>-58,8%</td>
</tr>
<tr>
<td>2014</td>
<td>890</td>
<td>166</td>
<td>1.056</td>
<td>90,3%</td>
</tr>
<tr>
<td>2015</td>
<td>458</td>
<td>228</td>
<td>686</td>
<td>-35,0%</td>
</tr>
<tr>
<td>2016</td>
<td>-4.628</td>
<td>-607</td>
<td>-5.235</td>
<td>-863,1%</td>
</tr>
</tbody>
</table>

SALDO EXTERIOR (IMPORTACIONES-EXPORTACIONES):

<table>
<thead>
<tr>
<th>Año</th>
<th>Hulla coquizable</th>
<th>Carbón energético</th>
<th>TOTAL</th>
<th>Tasa de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>2.528</td>
<td>10.619</td>
<td>13.147</td>
<td>-36,0%</td>
</tr>
<tr>
<td>2014</td>
<td>1.632</td>
<td>12.056</td>
<td>13.687</td>
<td>4,1%</td>
</tr>
<tr>
<td>2015</td>
<td>2.030</td>
<td>10.239</td>
<td>12.269</td>
<td>-10,4%</td>
</tr>
<tr>
<td>2016</td>
<td>1.676</td>
<td>13.354</td>
<td>15.030</td>
<td>22,5%</td>
</tr>
</tbody>
</table>

CONSUMO INTERIOR BRUTO (2):

<table>
<thead>
<tr>
<th>Año</th>
<th>TOTAL</th>
<th>Tasa de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>11.397</td>
<td>-26,4%</td>
</tr>
<tr>
<td>2014</td>
<td>11.639</td>
<td>2,1%</td>
</tr>
<tr>
<td>2015</td>
<td>14.426</td>
<td>23,9%</td>
</tr>
<tr>
<td>2016</td>
<td>10.442</td>
<td>-10,3%</td>
</tr>
</tbody>
</table>

Notas: (1) Existencias iniciales-Existencias finales. (2) Incluye gases siderúrgicos.

FUENTE: SEE-IRMC-EUROESTATCOM
Empleo en el sector

La plantilla propia de las empresas del sector de carbón estaba compuesta, a finales del año 2016, por 1.954 trabajadores, frente a los 2.795 del año precedente, lo que supone una reducción de empleo del 30,1%.

Paralelamente a la disminución de la plantilla propia del sector, se ha producido una minoración de las subcontratas. El número de personal subcontratado en 2014 alcanzó las 965 personas, un 14,4% menos respecto al año anterior, y se acentuó aún más en 2015, alcanzando las 581 personas. En 2016 los trabajadores de contratas sumaron 396, lo que supone un descenso anual del 32%.

Valoración estimada de la producción e ingreso por ventas de carbón

Durante 2016, el precio medio en factura del carbón nacional (hulla, antracita y lignito negro) destinado a los distintos usos fue de 55,18 euros por tonelada para un carbón con un Poder Calorífico Superior (en adelante, PCS) de 4.100 Kcal/Kg. Dicho precio supone una reducción del 17% respecto al del año anterior (66,58 €/t).

Expresado el precio en céntimos de euro por tonelada de PCS, fue de 1,35 lo que implica una disminución del 16% respecto al de 2015.

5.1.3. Características de la oferta y del proceso productivo

CUADRO 5.1.2. CONSUMO DE CARBÓN EN GENERACIÓN DE ENERGÍA ELÉCTRICA (KTEP)

CUADRO 5.1.3. CONSUMO FINAL DE CARBÓN (MILES DE TONELADAS)

<table>
<thead>
<tr>
<th>Antracita</th>
<th>Hulla</th>
<th>Lignito negro</th>
<th>Gas siderúrgico</th>
<th>TOTAL</th>
<th>Tasa de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>1.936</td>
<td>7.605</td>
<td>902</td>
<td>260</td>
<td>10.703</td>
</tr>
<tr>
<td>2012</td>
<td>2.001</td>
<td>10.168</td>
<td>667</td>
<td>203</td>
<td>13.039</td>
</tr>
<tr>
<td>2013</td>
<td>1.072</td>
<td>6.799</td>
<td>519</td>
<td>295</td>
<td>8.684</td>
</tr>
<tr>
<td>2014</td>
<td>1.015</td>
<td>7.669</td>
<td>678</td>
<td>253</td>
<td>9.635</td>
</tr>
<tr>
<td>2015</td>
<td>1.590</td>
<td>9.870</td>
<td>820</td>
<td>399</td>
<td>12.679</td>
</tr>
<tr>
<td>2016</td>
<td>853</td>
<td>7.869</td>
<td>424</td>
<td>240</td>
<td>9.386</td>
</tr>
</tbody>
</table>

CUADRO 5.1.3. CONSUMO FINAL DE CARBÓN (MILES DE TONELADAS)

<table>
<thead>
<tr>
<th>SIDERURGIA</th>
<th>CEMENTO</th>
<th>RESTO DE INDUST.</th>
<th>OTROS USOS</th>
<th>TOTAL</th>
<th>% var anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>1.150</td>
<td>23</td>
<td>207</td>
<td>223</td>
<td>1.603</td>
</tr>
<tr>
<td>2011</td>
<td>1.283</td>
<td>12,6%</td>
<td>164</td>
<td>625,6%</td>
<td>270</td>
</tr>
<tr>
<td>2012</td>
<td>1.076</td>
<td>–16,1%</td>
<td>9</td>
<td>–94,4%</td>
<td>238</td>
</tr>
<tr>
<td>2013</td>
<td>1.374</td>
<td>27,7%</td>
<td>9</td>
<td>–6,8%</td>
<td>233</td>
</tr>
<tr>
<td>2014</td>
<td>1.135</td>
<td>–17,4%</td>
<td>8</td>
<td>–6,4%</td>
<td>97</td>
</tr>
<tr>
<td>2015</td>
<td>1.077</td>
<td>–5,1%</td>
<td>7</td>
<td>–6,1%</td>
<td>183</td>
</tr>
<tr>
<td>2016</td>
<td>986</td>
<td>–8,4%</td>
<td>5</td>
<td>–36,3%</td>
<td>182</td>
</tr>
</tbody>
</table>

FUENTE: SEE - IRMC - EUROESTATCOM

FUENTE: SEE - IRMC - EUROESTATCOM
Respecto a la concesión de ayudas a las empresas mineras para cubrir costes excepcionales, conforme al artículo 4 de la Decisión 2010/787/UE, en concepto de ayudas laborales para prejubilaciones y bajas incentivadas en 2016, se concedieron 228,7 millones de euros.

5.1.4 Comercio Exterior

En el sector de la minería del carbón, el saldo comercial en el año es netamente importador, puesto que prácticamente no existe exportación de carbón español, aunque se reexportan carbones importados.

En 2016, la importación neta de hulla y de antracita, según los datos elaborados por el Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras (IRMC), a partir de Eurostatcom, disminuyó en un 17,4 %, pasando de 16,17 millones de toneladas en 2015 a 13,35 millones de toneladas en 2016. Las razones principales de ese descenso se hallan en un menor funcionamiento de las centrales térmicas consumidoras de carbón, así como en la brusca subida del precio del carbón importado en el último trimestre del año.

Según los datos elaborados por el IRMC a partir de Eurostatcom, la importación evolucionó desde 1.180,9 millones de euros en 2015 a 938,9 millones de euros en 2016. El valor del carbón neto importado en 2016 alcanzó 908,1 millones de euros frente a los 1.086 millones de euros del año precedente. Tradicionalmente las importaciones han tenido su origen de forma mayoritaria en Colombia, Rusia, Indonesia y Sudáfrica.

CUADRO 5.1.4. MANO DE OBRA EMPLEADA EN LA MINERÍA 2016

<table>
<thead>
<tr>
<th>Tipo de Carbón</th>
<th>Plantilla Propia 2014</th>
<th>Plantilla Propia 2015</th>
<th>Plantilla Propia 2016</th>
<th>15/14</th>
<th>16/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hulla Autóctona</td>
<td>1.918</td>
<td>1.705</td>
<td>1.306</td>
<td>−11,1</td>
<td>−23,4</td>
</tr>
<tr>
<td>Antracita Autóctona</td>
<td>1.012</td>
<td>901</td>
<td>479</td>
<td>−11,0</td>
<td>−46,8</td>
</tr>
<tr>
<td>Lignito Negro Autóctono</td>
<td>196</td>
<td>189</td>
<td>169</td>
<td>−3,57</td>
<td>−10,6</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>3.126</td>
<td>2.795</td>
<td>1.954</td>
<td>−10,6</td>
<td>−30,1</td>
</tr>
</tbody>
</table>

FUENTE: SEE - IRMC - EUROSTATCOM

CUADRO 5.1.5. SALDO DE COMERCIO EXTERIOR (MILES T) 2013-2015

<table>
<thead>
<tr>
<th>Minerales</th>
<th>Miles de Tm</th>
<th>Variación (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014</td>
<td>2015</td>
</tr>
<tr>
<td>HULLA importada</td>
<td>14.031</td>
<td>16.019</td>
</tr>
<tr>
<td>HULLA exportada</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td>HULLA neta</td>
<td>13.431</td>
<td>15.719</td>
</tr>
<tr>
<td>ANTRACITA importada</td>
<td>566</td>
<td>669</td>
</tr>
<tr>
<td>ANTRACITA exportada</td>
<td>310</td>
<td>217</td>
</tr>
<tr>
<td>ANTRACITA neta</td>
<td>256</td>
<td>452</td>
</tr>
<tr>
<td>TOTAL neto importado</td>
<td>13.687</td>
<td>16.171</td>
</tr>
</tbody>
</table>

FUENTE: SEE - IRMC - EUROSTATCOM
5.2. ESTRUCTURA DEL SECTOR

El sector de la minería de carbón en España viene experimentando en las últimas décadas un proceso de reestructuración enmarcado en las distintas regulaciones europeas sobre la industria del carbón, primero en el marco del Tratado de la CECA, después en el ámbito de la normativa de la UE, concretamente del Reglamento (CE) Nº 1407/2002 del Consejo, de 23 de julio de 2002, sobre las ayudas estatales a la industria del carbón y, a la expiración de este, en el marco de la Decisión 2010/787/UE del Consejo, de 10 de diciembre de 2010, relativa a las ayudas destinadas a facilitar el cierre de minas no competitivas.

La consecuencia de todos estos planes, que como se ha indicado se iniciaron en el año 1990, ha sido la reducción constante del número de empresas del sector, de la producción, de las plantillas y del volumen de ayudas.; En 2015, 11 empresas produjeron menos de 3,5 millones de toneladas, con una plantilla propia de 2.795 personas; y en 2016, 10 empresas produjeron aproximadamente 1,8 millones de toneladas, con una plantilla propia de 1.954 personas.

5.3. LA POLÍTICA CARBONERA EN EL AÑO, EN ESPAÑA Y EN LA UE

Tras la finalización del Tratado CECA (2002), se entendió necesario en el ámbito comunitario continuar con la reordenación y reestructuración de la minería del carbón a nivel europeo. Como consecuencia de ello, se aprobó un nuevo marco comunitario que regulaba las actuaciones a desarrollar para la reestructuración de este sector económico y la reactivación de las comarcas afectadas. Este nuevo marco regulatorio fue el Reglamento (CE) Nº 1407/2002, del Consejo, de 23 de julio de 2002, sobre ayudas estatales a la industria del carbón, que tenía como límite de vigencia el 31 de diciembre de 2010.

Este nuevo marco regulatorio facilitó la continuación de las actuaciones contempladas en el Plan 1998-2005, que se habían iniciado bajo el marco legal comunitario establecido en la Decisión 3632/93/CECA, de 28 de diciembre de 1993. Por lo tanto, el desarrollo del Plan 1998-2005 se realizó entre dos marcos regulatorios comunitarios.

Plan 2006-2012

Finalizado el Plan 1998-2005 y, entendiendo que era necesario continuar con la reordenación y reestructuración del sector en España, y bajo el am-
que expiró el 31 de diciembre de 2010, y estableció el 31 de diciembre de 2018 (artículo 3.1.a) como fecha límite para el cierre de las explotaciones mineras no competitivas, de acuerdo con un plan de cierre autorizado por la Comisión Europea.

Adicionalmente, el cierre progresivo de las unidades de producción de una actividad industrial, y máxime de una actividad como la minería del carbón, lleva aparejado una serie de repercusiones sociales y regionales, sobre el empleo, el mercado de trabajo y el impacto medioambiental que es preciso mitigar. Por ello, en el artículo 4 de la referida Decisión 2010/787/UE se contemplaron las ayudas para cubrir determinadas categorías de costes no relacionados con la producción corriente y vinculados al cierre de las minas, que se denominan costes excepcionales: el pago de pensiones o indemnizaciones ajenas al sistema legal, las obras adicionales de seguridad en el interior de las minas, el coste de prestaciones sociales derivadas de la jubilación de trabajadores, la rehabilitación de antiguas zonas de extracción, etc. De este modo, conforme al artículo 4 de la decisión todas las ayudas que se concediesen para cubrir esos costes excepcionales serían consideradas compatibles con el mercado interior.

La Decisión 2010/787/UE del Consejo, de 10 de diciembre de 2010, relativa a las ayudas estatales destinadas a facilitar el cierre de las minas no competitivas de carbón, (en adelante, Decisión 2010/787/UE) sustituye al citado Reglamento (CE) Nº1407/2002 de Consejo de 23 de julio de 2002, que expirió el 31 de diciembre de 2010, y estableció el 31 de diciembre de 2018 (artículo 3.1.a) como fecha límite para el cierre de las explotaciones mineras no competitivas, de acuerdo con un plan de cierre autorizado por la Comisión Europea.

Adicionalmente, el cierre progresivo de las unidades de producción de una actividad industrial, y máxime de una actividad como la minería del carbón, lleva aparejado una serie de repercusiones sociales y regionales, sobre el empleo, el mercado de trabajo y el impacto medioambiental que es preciso mitigar. Por ello, en el artículo 4 de la referida Decisión 2010/787/UE se contemplaron las ayudas para cubrir determinadas categorías de costes no relacionados con la producción corriente y vinculados al cierre de las minas, que se denominan costes excepcionales: el pago de pensiones o indemnizaciones ajenas al sistema legal, las obras adicionales de seguridad en el interior de las minas, el coste de prestaciones sociales derivadas de la jubilación de trabajadores, la rehabilitación de antiguas zonas de extracción, etc. De este modo, conforme al artículo 4 de la decisión todas las ayudas que se concediesen para cubrir esos costes excepcionales serían consideradas compatibles con el mercado interior.

Plan de Cierre del Reino de España para la Minería del Carbón no competitiva en el marco de la Decisión 2010/787/UE

El Plan de cierre del Reino de España aprobado por Decisión de la Comisión Europea de fecha 27 de mayo de 2016 contempla las líneas de ayudas previstas para las empresas del sector según lo establecido en la Decisión 2010/787/UE.
Marco de actuación para la minería del carbón y las comarcas mineras en el período 2013-2018

A nivel nacional, el Marco de Actuación para la minería del carbón y las comarcas mineras en el período 2013-2018, fue firmado por la Administración, los sindicatos y la patronal de las empresas mineras (CARBUNIÓN) con fecha 1 de octubre de 2013 y constituye la base de las políticas públicas de reordenación del sector de la minería del carbón y de promoción de una economía alternativa en las zonas mineras, de acuerdo con el marco normativo europeo establecido por la Decisión del Consejo 2010/787/UE, de 10 de diciembre de 2010, relativa a las ayudas estatales destinadas a facilitar el cierre de minas no competitivas.

Las disposiciones aprobadas según lo dispuesto en la citada Decisión en desarrollo de dicho Marco de Actuación son las siguientes:

1. Regulación de ayudas a la producción, que cubren la diferencia entre costes e ingresos.

- ORDEN IET/2095/2013, de 12 de noviembre, (BOE Nº 273 de 14/11/2013) por la que se establecen las bases reguladoras de las ayudas para los ejercicios 2013 a 2018 destinadas específicamente a cubrir las pérdidas de la producción corriente de unidades de producción incluidas en el Plan de Cierre del Reino de España para la minería de carbón no competitiva y se efectúa la convocatoria de ayudas para el ejercicio 2013.

- RESOLUCIÓN de 4 de abril de 2014, (BOE Nº 88 de 11/04/2014) del Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras, por la que se resuelve la convocatoria de ayudas para el ejercicio 2013, efectuada por la Orden IET/2095/2013, de 12 de noviembre.

- Orden IET 1424/2014, de 28 de julio, (BOE Nº 185 de 31/07/2014) por la que se modifica la Orden IET/2095/2013, de 12 de noviembre, por la que se establecen las bases reguladoras de las ayudas para los ejercicios 2013 a 2018 destinadas específicamente a cubrir las pérdidas de la producción corriente de unidades de producción incluidas en el Plan de Cierre del Reino de España para la minería de carbón no competitiva y se efectúa la convocatoria de ayudas para el ejercicio 2013.

- RESOLUCIÓN de 16 de septiembre de 2014, (BOE Nº 230 de 22/09/2014) del Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras, por la que se convocan para el ejercicio de 2014 las ayudas destinadas específicamente a cubrir las pérdidas de la producción corriente de unidades de producción incluidas en el Plan de Cierre del Reino de España para la minería del carbón no competitiva.

- RESOLUCIÓN de 26 de diciembre de 2014, (BOE Nº 6 de 07/01/2015) del Instituto para la Reestructuración de la Minería del Carbón y De-
sarrrollo Alternativo de las Comarcas Mineras, por la que se publican las ayudas a la industria minera del carbón para el ejercicio 2014, correspondientes a las previstas en el artículo 3 de la Decisión 2010/787/UE del Consejo, de 10 de diciembre de 2010.

- RESOLUCIÓN de 27 de marzo de 2015, (BOE Nº 78 de 01/04/2015) del Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras, por la que se convocan ayudas destinadas específicamente a cubrir las pérdidas de la producción corriente de unidades de producción incluidas en el Plan de Cierre del Reino de España para la minería del carbón no competitiva, para el ejercicio de 2015.

- RESOLUCIÓN de 8 de mayo de 2015, (BOE Nº 122 de 22/05/2015) del Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras, por la que se regularizan las ayudas del periodo noviembre-diciembre destinadas específicamente a cubrir las pérdidas de producción corriente de unidades de producción incluidas en el Plan de Cierre del Reino de España para la minería del carbón no competitiva, para el ejercicio 2014.

- RESOLUCIÓN de 5 de octubre de 2015, (BOE Nº 268 de 9/11/2015) del Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras, por la que se publican las ayudas a la industria minera del carbón para el ejercicio 2015, correspondientes a las previstas en el artículo 3 de la Decisión 2010/787/UE del Consejo, de 10 de diciembre de 2010.

- RESOLUCIÓN de 23 de junio de 2016, (BOE Nº 171 de 16/07/2016) del Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras por la que se convocan las ayudas, para el ejercicio 2016, destinadas específicamente a cubrir las pérdidas a la producción corriente de unidades de producción incluidas en el Plan de Cierre del Reino de España para la minería del carbón no competitiva.

- ORDEN IET/1662/2016, de 13 de octubre, (BOE Nº 250 de 15/10/2016) por la que se modifica la Orden IET/2095/2013, de 12 de noviembre, por la que se establecen las bases reguladoras de las ayudas para los ejercicios 2013 a 2018 destinadas específicamente a cubrir las pérdidas de la producción corriente de unidades de producción incluidas en el Plan de Cierre del Reino de España para la minería de carbón no competitiva y se efectúa la convocatoria de ayudas para el ejercicio 2013.

- RESOLUCIÓN de 31 de octubre de 2016, (BOE Nº 273 de 11/11/2016) del Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo delas Comarcas Mineras, por la que se convoca en 2016 una ayuda adicional destinada a cubrir las pérdidas de la producción corriente de unidades de producción de carbón no competitivas.

II. Régimen de ayudas a proyectos empresariales generadores de empleo que promuevan el desarrollo alternativo de las zonas mineras.

- RESOLUCIÓN de 21 de octubre de 2013, (BOE Nº 276 de 18/11/2013) del Instituto para la Re-
estructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras, por la que se publica la relación de empresas que obtuvieron subvención para sus proyectos empresariales, en los años 2010 y 2011.

- RESOLUCIÓN de 21 de julio de 2014, (BOE N° 197 de 14/08/2014) del Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras, por la que se convocan las ayudas dirigidas a proyectos empresariales generadores de empleo, que promuevan el desarrollo alternativo de las zonas mineras, para el ejercicio 2014.

- RESOLUCIÓN de 10 de agosto de 2015, (BOE N° 233 de 29/09/2015) del Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras, por la que se aprueban ayudas destinadas a proyectos empresariales correspondientes a la convocatoria del año 2014.

- RESOLUCIÓN de 2 de octubre de 2015, (BOE N° 292 de 7/12/2015) del Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras, por la que se aprueban las ayudas destinadas a proyectos de inversión generadores de empleo que promuevan el desarrollo alternativo de las zonas mineras para el ejercicio 2015.

- RESOLUCIÓN de 2 de octubre de 2015, (BOE N° 292 de 07/12/2015) del Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras, por la que se aprueban las ayudas destinadas a pequeños proyectos de inversión correspondientes a la convocatoria del año 2014.

- RESOLUCIÓN de 23 de junio de 2016, (BOE N° 177 de 23/07/2016) del Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras, por la que se convocan las ayudas dirigidas a proyectos empresariales generadores de empleo que promuevan el desarrollo alternativo de las zonas mineras, para el ejercicio 2016.

- RESOLUCIÓN de 16 de junio de 2016, (BOE N° 182 de 29/07/2016) del Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras, por la que se convocan las ayudas dirigidas a pequeños proyectos de inversión generadores de empleo que promuevan el desarrollo alternativo de las zonas mineras, para el ejercicio 2016.

III. Disposiciones sobre costes excepcionales de reestructuración de la minería del carbón.

- - ORDEN IET/594/2014, de 10 de abril, (BOE N° 91 de 15/04/2014) por la que se aprueban las bases reguladoras para los ejercicios 2013 a 2018 de las ayudas destinadas específica-
mente a cubrir costes excepcionales que se produzcan o se hayan producido a causa del cierre de unidades de producción de carbón incluidas en el Plan de Cierre de la Minería del Carbón 2013-2018.

- REAL DECRETO 676/2014, de 1 de agosto, (BOE Nº 190 de 06/08/2014) por el que se establece el régimen de ayudas por costes laborales destinadas a cubrir costes excepcionales vinculados a planes de cierre de unidades de producción de las empresas mineras del carbón.

- RESOLUCIÓN de 6 de febrero de 2015, (BOE Nº 36 de 11/02/2015) del Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras, por la que se convocan las ayudas destinadas específicamente a cubrir costes excepcionales que se produzcan o se hayan producido a causa del cierre de unidades de producción de carbón incluidas en el Plan de Cierre del Reino de España para la minería de carbón no competitiva, para el ejercicio 2015.

- RESOLUCIÓN de 4 de diciembre de 2015, (BOE Nº 292 de 07/12/2015) del Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras, por la que se modifica la de 6 de febrero de 2015, por la que se convocan las ayudas destinadas específicamente a cubrir costes excepcionales que se produzcan o se hayan producido a causa del cierre de unidades de producción de carbón incluidas en el Plan de Cierre del Reino de España para la minería de carbón no competitiva, para el ejercicio 2015.

- RESOLUCIÓN de 20 de diciembre de 2016, (BOE Nº 4 de 05/01/2017) del Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras (IRMC) por la que se convocan en 2016 las ayudas destinadas específicamente a cubrir costes excepcionales que se produzcan o se hayan producido a causa del cierre de unidades de producción de carbón incluidas en el Plan de Cierre del Reino de España para la minería de carbón no competitiva

IV. Disposición que regula el otorgamiento de ayudas a las infraestructuras de las comarcas mineras.

- REAL DECRETO 675/2014, de 1 de agosto, (BOE Nº 190 de 06/08/2014) por el que se establecen las bases reguladoras de ayudas para el impulso económico de las comarcas mineras del carbón, mediante el desarrollo de proyectos de infraestructuras y proyectos de restauración de zonas degradadas a causa de la actividad minera.

5.4. ACTIVIDAD DEL INSTITUTO PARA LA REESTRUCTURACIÓN DE LA MINERÍA DEL CARBÓN Y DESARROLLO ALTERNATIVO DE LAS COMARCAS MINERAS

El Instituto para la Reestructuración de la Minería del Carbón y Desarrollo Alternativo de las Comarcas Mineras, es un Organismo Autónomo, adscrito al Ministerio de Energía, Turismo y Agenda Digital, presidido por el Secretario de Estado de Energía.
Fue creado mediante la Ley 66/1997, de 30 de diciembre, de Medidas Fiscales, Administrativas y del Orden Social y está dotado de personalidad jurídica y plena capacidad de obrar como órgano gestor del «régimen de ayudas para la minería del carbón y el desarrollo alternativo de las zonas mineras».

El Instituto tiene por objeto la ejecución de la política de reestructuración del carbón, así como el desarrollo y ejecución de cuantas medidas se dirijan a fomentar el desarrollo económico de aquellas zonas que, de acuerdo con la normativa aplicable, tengan la consideración de municipios mineros del carbón.

En relación con este último aspecto, el Instituto gestiona las ayudas de cualquier naturaleza que se concedan a las empresas dedicadas a la minería del carbón, tanto las ayudas destinadas a cubrir cargas excepcionales vinculadas a planes de modernización, racionalización o cese de las empresas mineras del carbón como los fondos dedicados al desarrollo económico de las zonas mineras del carbón. Asimismo, suscribe aquellos convenios que se estimen pertinentes para el mejor cumplimiento de su objeto y ejecuta cuantas otras medidas se precisen para desarrollar la política de reordenación de la minería del carbón y de promoción del desarrollo alternativo de las zonas mineras.

Durante estos últimos años, la actividad del Instituto ha girado en torno a conseguir los dos grandes objetivos marcados en los diferentes Planes del sector de acuerdo con la normativa de la UE, esto es: (i) Ejecutar la política de reestructuración de la minería del carbón y (ii) desarrollar y ejecutar medidas que fomenten el desarrollo económico de las comarcas mineras.

El Instituto ha articulado el «Plan de Cierre del Reino de España para la minería del carbón no competitiva en el marco de la Decisión 2010/787/UE» que ha sido autorizado por Decisión de 27 de mayo 2016 de la Comisión Europea, por la que se declara que tanto dicho Plan como las ayudas concedidas sobre la base del mismo cumplen con las condiciones exigidas por la norma comunitaria.
6. INVESTIGACIÓN Y EXPLOTACIÓN INTERIOR DE HIDROCARBUROS
6.1. INVESTIGACIÓN DE HIDROCARBUROS

Durante el año 2016, se ha confirmado el cambio de tendencia producido en 2015, tras un interés sostenido en el sector de la exploración y producción de hidrocarburos en España durante periodos anteriores. Existen varias razones que explican este comportamiento; en primer lugar, la continuidad del escenario desfavorable de precios del crudo, iniciado con el desplome del precio del barril de Brent a finales de 2014, y que ha impedido la ejecución de proyectos que en otro contexto económico hubieran resultado viables. En segundo lugar, la gran oposición social que despierta la ejecución de estos proyectos, especialmente los orientados a la investigación y explotación de recursos no convencionales tanto en territorio nacional como en medio marino.

Los principales proyectos de recursos no convencionales se sitúan en la cuenca vasco-cantábrica, sin embargo, todos ellos se encuentran en una fase preliminar en la actualidad, sin que haya sido ejecutado ningún pozo con el objetivo de extraer este tipo de hidrocarburos.

Del mismo modo, cabe destacar la aprobación de diversas iniciativas legislativas autonómicas orientadas a la prohibición de este tipo de proyectos en los últimos años. A destacar las siguientes:

- Ley 1/2013, de 15 de abril, por la que se regula la prohibición en el territorio de la Comunidad Autónoma de Cantabria de la técnica de fractura hidráulica como técnica de investigación y extracción de gas no convencional. En la sentencia 106/2014, de 24 de junio de 2014, el Tribunal Constitucional ha declarado la inconstitucionalidad de dicha ley.

- Ley 7/2013, de 21 de junio, por la que se regula la prohibición en el territorio de la Comunidad Autónoma de La Rioja de la técnica de la fracturación hidráulica como técnica de investigación y extracción de gas no convencional. En la sentencia 134/2014, de 22 de julio de 2014, el Tribunal Constitucional ha declarado la inconstitucionalidad de dicha ley.

- Ley Foral 30/2013, de 15 de octubre, por la que se prohíbe en el territorio de la Comunidad Foral de Navarra el uso de la fractura hidráulica como técnica de investigación y extracción de gas no convencional. En la sentencia 208/2014, de 15 de diciembre de 2014, el Tribunal Constitucional ha resuelto la inconstitucionalidad de dicha ley.

- Ley 2/2014, de 27 de enero, de medidas fiscales, administrativas, financieras y del sector público de Cataluña, cuyo artículo 167 modifica la Ley de Urbanismo, aprobada por Decreto Legislativo 1/2010, de 3 de agosto, prohibiendo la técnica de fracturación hidráulica en determinadas circunstancias. En el Auto 63/2015, de 17 de marzo, sobre el recurso de inconstitucionalidad 6513/2014 contra el art. 167.1 y las disposiciones transitorias quinta y octava de la Ley 2/2014, de 27 de enero, el Tribunal Constitucional acordó levantar la suspensión contra el precepto señalado. Finalmente, de acuerdo con la nota informativa nº 34/2016, del Tribunal Constitucional, el Pleno del Tribunal Constitucional ha estima-
do parcialmente el recurso de inconstitucionalidad declarando inconstitucional y nulo el art. 167.1 de la ley recurrida.

– Ley 6/2015, de 30 de junio, de la Comunidad Autónoma del País Vasco de medidas adicionales de protección medioambiental para la extracción de hidrocarburos no convencionales y la fractura hidráulica o «fracking», objeto de recurso de inconstitucionalidad n° 24/2016 interpuso por el Presidente del Gobierno.

Asimismo, cabe señalar la Ley 1/2017, de 9 de marzo, por la que se establecen medidas adicionales de protección de la salud pública y del medio ambiente para la exploración, investigación o explotación de hidrocarburos utilizando la técnica de la fractura hidráulica.

En cuanto al desarrollo de normativa del sector a nivel estatal, destaca la aprobación de la Orden ETU/78/2017, de 31 de enero, por la que se regulan determinados aspectos relacionados con el Impuesto sobre el Valor de la Extracción de Gas, Petróleo y Condensados y con los perímetros de referencia para la determinación de los pagos a propietarios de terrenos suprayacentes a concesiones de explotación de yacimientos de hidrocarburos, desarrollando de este modo el título II de la Ley 8/2015, de 21 de mayo, por la que se modifica la Ley 34/1998, de 7 de octubre.

Esta orden persigue tres objetivos concretos; en primer lugar, regular las características técnicas, operativas y logísticas que deben cumplir los dispositivos de medición de la extracción de hidrocarburos, así como los requisitos que debe cumplir el registro de las mediciones efectuadas por tales dispositivos; en segundo lugar, determina los precios de referencia de los hidrocarburos producidos; y por último, se dictan las disposiciones necesarias para determinar los perímetros de referencia dentro de los cuales, los propietarios de terrenos tienen derecho a percibir pagos de los titulares de concesiones de explotación de yacimientos.

Asimismo, mencionar la aprobación del Real Decreto 294/2016, de 15 de julio, por el que se establece el procedimiento para la gestión de los derechos mineros y de los derechos del dominio público de hidrocarburos afectados por el cambio del sistema geodésico de referencia. En él se ha desarrollado el procedimiento para la asignación de demásías mineras generadas como consecuencia de dicha adaptación geodésica.

En cuanto a la evolución del dominio minero, durante el año 2016 no se han otorgado nuevos permisos de investigación de hidrocarburos, ni de ámbito estatal ni de ámbito autonómico. Sin embargo, dentro del ámbito autonómico, se encuentra en tramitación y fue anunciado en el Boletín Oficial del Estado de 7 de noviembre de 2016, núm. 269, «Anuncio de la Dirección General de Minería y Energía de la Concejía de Empleo, Industria y Turismo del Principado de Asturias, la Información Pública de la Solicitud del Permiso de Investigación de Hidrocarburos LLÁBANA-1», presentado por HUNOSA (70%) y VOLTA (30%). En el ámbito estatal no se han publicado en el Boletín Oficial del Estado solicitudes de nuevos permisos de investigación de hidrocarburos.
6.2. EXPLOTACIÓN DE HIDROCARBUROS

La tabla inferior refleja las concesiones de explotación de yacimientos de hidrocarburos en vigor en España a 31 de diciembre de 2016. En líneas generales podemos agruparlas en tres grandes grupos. El primero de ellos estaría formado en exclusiva por la concesión «Lora», el único campo terrestre de producción de petróleo que desde los años 60 viene siendo explotado ininterrumpidamente y cuya vigencia finaliza a principios del 2017.

CUADRO 6.1.

<table>
<thead>
<tr>
<th>Ámbito</th>
<th>Denominación</th>
<th>Solicitantes</th>
<th>Ubicación</th>
<th>Superficie (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonómico</td>
<td>Labana-1 (HC-13)</td>
<td>Hunos a Volta Energy</td>
<td>Principado de Asturias</td>
<td>37.314,00</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td></td>
<td></td>
<td>37.314,00</td>
</tr>
</tbody>
</table>

Por otra parte, durante el año 2016, se han extinguido los siguientes permisos de investigación, ya sea por renuncia de su titular, por desistimiento de una solicitud previa o por la caducidad de los mismos:

El gráfico que se muestra a continuación muestra el dominio de hidrocarburos a diciembre de 2016 y en él pueden consultarse tanto los permisos vigentes como solicitados a la fecha señalada en el ámbito competencial de la Administración General de Estado y en el de las diferentes Comunidades Autónomas. Puede observarse como la cuenca vasco-cantábrica es en la que más actividad se está desarrollando, si bien el interés exploratorio se está extendiendo a otras zonas como el Golfo de León y en el mar Cantábrico. Este mapa está disponible en la página web del Ministerio de Energía, Turismo y Agenda Digital y es actualizado periódicamente.

CUADRO 6.2.

<table>
<thead>
<tr>
<th>Ámbito</th>
<th>Denominación</th>
<th>Titulares</th>
<th>Publicación Boletín Fin</th>
<th>Estado anterior</th>
<th>Extinción</th>
<th>Superficie (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>ROJAS</td>
<td>TROFAGAS</td>
<td>25/10/2016</td>
<td>ESTATAL SOLICITADO</td>
<td>DESISTIDO</td>
<td>94.896,00</td>
</tr>
<tr>
<td></td>
<td>ARIES-1</td>
<td>INVESTA</td>
<td>20/07/2016</td>
<td>ESTATAL VIGENTE</td>
<td>CADUCADO</td>
<td>100.650,00</td>
</tr>
<tr>
<td></td>
<td>ATLAS</td>
<td>FRONTERA ENERGY</td>
<td>29/02/2016</td>
<td>ESTATAL SOLICITADO</td>
<td>DESISTIDO</td>
<td>103.336,10</td>
</tr>
<tr>
<td></td>
<td>HELIOS</td>
<td>FRONTERA ENERGY</td>
<td>29/02/2016</td>
<td>ESTATAL SOLICITADO</td>
<td>DESISTIDO</td>
<td>103.668,80</td>
</tr>
<tr>
<td></td>
<td>PERSEO</td>
<td>FRONTERA ENERGY</td>
<td>29/02/2016</td>
<td>ESTATAL SOLICITADO</td>
<td>DESISTIDO</td>
<td>105.755,10</td>
</tr>
<tr>
<td></td>
<td>PROMETEO</td>
<td>FRONTERA ENERGY</td>
<td>29/02/2016</td>
<td>ESTATAL SOLICITADO</td>
<td>DESISTIDO</td>
<td>103.029,40</td>
</tr>
<tr>
<td></td>
<td>QUIMERA</td>
<td>FRONTERA ENERGY</td>
<td>29/02/2016</td>
<td>ESTATAL SOLICITADO</td>
<td>DESISTIDO</td>
<td>101.912,10</td>
</tr>
<tr>
<td></td>
<td>PEGASO</td>
<td>FRONTERA ENERGY</td>
<td>29/02/2016</td>
<td>ESTATAL SOLICITADO</td>
<td>DESISTIDO</td>
<td>102.884,30</td>
</tr>
<tr>
<td>CCAA</td>
<td>VALDEREDIBLE</td>
<td>COMPAÑÍA PETROLÍFERA DE SEDANO</td>
<td>18/10/2016</td>
<td>AUTONÓMICO VIGENTE</td>
<td>CADUCADO</td>
<td>24.056,00</td>
</tr>
<tr>
<td></td>
<td>ROJAS SOLICITADO</td>
<td>TROFAGAS</td>
<td>25/10/2016</td>
<td>AUTONÓMICO SOLICITADO</td>
<td>DESISTIDO</td>
<td>94.896,00</td>
</tr>
<tr>
<td></td>
<td>SEDANO</td>
<td>TROFAGAS</td>
<td>30/12/2016</td>
<td>AUTONÓMICO VIGENTE</td>
<td>RENUNCIADO</td>
<td>34.755,50</td>
</tr>
</tbody>
</table>
Por último, el tercer grupo está constituido por las concesiones que tienen a la plataforma Casablanca como núcleo común de procesado, frente a las costas de Tarragona («Casablanca», «Angula», «Montanazo D», «Rodaballo» y «Lubina»).

6.3. ALMACENAMIENTO SUBTERRÁNEO DE GAS NATURAL

De acuerdo con la Ley 34/1998, de 7 de octubre, la utilización de estructuras subterráneas para el almacenamiento de gas natural requiere el otorgamiento de una concesión de explotación de almacenamiento de hidrocarburos. La tabla inferior refleja las concesiones de almacenamiento existentes en la actualidad, todas ellas con la finalidad de almacenar gas natural para el sistema gasista. Estos almacenamientos de acuerdo con el artículo 59.2 de la Ley 34/1998, de 7 de octubre, se encuentran incluidos en la red básica de gas natural y están sujetos al régimen regulado de acceso a terceros según establece el Real Decreto 949/2001, de 3 de agosto, y la normativa que lo desarrolla.

En este contexto, cabe realizar una mención específica al almacenamiento subterráneo «Castor». A raíz del episodio sísmico de septiembre y octubre de 2013 durante la inyección del gas colchón en el
CUADRO 6.3.

<table>
<thead>
<tr>
<th>Empresas</th>
<th>Concesiones</th>
<th>B.O.E.</th>
<th>Vigencia</th>
<th>Superficie (ha)</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPAÑÍA LORA</td>
<td>31/01/1967</td>
<td>31/01/1967</td>
<td>30/01/2017</td>
<td>10.619,28</td>
<td></td>
</tr>
<tr>
<td>PETROLÍFERA DE SEDANO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIPSA CASABLANCA</td>
<td>27/12/1978</td>
<td>28/12/1978</td>
<td>27/12/2008</td>
<td>7.036,00</td>
<td>4,786 Ha. a Unitización con MONTANAZO D y 266,76 Ha. a Unitización con ANGULA.</td>
</tr>
<tr>
<td>PETROLEUM CNWL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEPSA EP SL</td>
<td>17/03/2009</td>
<td>27/12/2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETROLEUM MONTANAZO D</td>
<td>04/01/1980</td>
<td>05/01/1980</td>
<td>04/01/2010</td>
<td>3.259,50</td>
<td>1.110 Ha. a Unitización con CASABLANCA</td>
</tr>
<tr>
<td>RIPSA CEPSA EP SL CNWL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIPS A GAVIOTA I</td>
<td>14/07/1983</td>
<td>15/07/1983</td>
<td>14/07/2013</td>
<td>7.960,00</td>
<td>4,726,44 Superficie inicial</td>
</tr>
<tr>
<td>MURPHY</td>
<td>29/12/2007</td>
<td></td>
<td></td>
<td></td>
<td>Converión de parte de la superficie de Gaviota I (3.233,88 ha) en concesión</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>almacenamiento Gaviota (4.229 ha)</td>
</tr>
<tr>
<td>RIPS A GAVIOTA II</td>
<td>14/07/1983</td>
<td>15/07/1983</td>
<td>14/07/2013</td>
<td>3.234,00</td>
<td>Superficie inicial</td>
</tr>
<tr>
<td>MURPHY</td>
<td>29/12/2007</td>
<td></td>
<td></td>
<td></td>
<td>Converión de parte de la superficie de Gaviota II (995,04 ha) en concesión</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>almacenamiento Gaviota (4.229 ha)</td>
</tr>
<tr>
<td>RIPS A ANGULA CNWL</td>
<td>03/12/1985</td>
<td>03/12/2015</td>
<td>03/12/2015</td>
<td>3.129,00</td>
<td>177,84 Ha. a Unitización con CASABLANCA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Otorgamiento 1ª prorroga (10 años)</td>
</tr>
<tr>
<td>& GAS ESPAÑA</td>
<td>03/08/2011</td>
<td></td>
<td></td>
<td></td>
<td>Ha (total: 6529,92)</td>
</tr>
<tr>
<td>& GAS ESPAÑA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETROLEUM OIL MARISMAS C-2</td>
<td>14/07/1989</td>
<td>15/07/1989</td>
<td>14/07/2019</td>
<td>3.128,92</td>
<td>Adaptación a CE almacenamiento subterráneo</td>
</tr>
<tr>
<td>& GAS ESPAÑA</td>
<td>03/08/2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
mismo y de la subsiguiente suspensión de la operación en el almacenamiento subterráneo, se encargaron sendos informes al Instituto Geográfico Nacional y al Instituto Geológico y Minero de España. Estos informes no permitían aún emitir una conclusión definitiva sobre las eventuales consecuencias de una vuelta a la operación de «Castor» y, por el contrario, recomendaban la realización de estudios adicionales.

El Real Decreto-ley 13/2014, de 3 de octubre, hibernó las instalaciones del almacenamiento subterráneo y encargó a la empresa ENAGAS Transporte, S.A.U. la realización de los estudios necesarios so-

<table>
<thead>
<tr>
<th>Empresas</th>
<th>Concesiones</th>
<th>B.O.E.</th>
<th>Vigencia</th>
<th>Superficie (ha)</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EL RUEDO-3</td>
<td>23/09/1993</td>
<td>24/09/1993</td>
<td>13.224,00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30/01/2003</td>
<td>23/09/2023</td>
<td></td>
<td>Renuncia parcial y cesión participación</td>
</tr>
<tr>
<td>PETROLEUM OIL & GAS ESPAÑA</td>
<td>EL ROMERAL 1</td>
<td>28/07/1994</td>
<td>29/07/1994</td>
<td>8.162,40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28/07/2024</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28/07/2024</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28/07/2024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETROLEUM OIL & GAS ESPAÑA</td>
<td>MARISMAS A</td>
<td>30/05/1995</td>
<td>31/05/1995</td>
<td>8.842,60</td>
<td>Adaptación a CE almacenamiento subterráneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30/05/2025</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>03/08/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIPSAS</td>
<td>POSEIDON NORTE</td>
<td>07/12/1995</td>
<td>08/12/1995</td>
<td>10.751,52</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>07/12/2025</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13/08/2005</td>
<td></td>
<td>Renuncia parcial</td>
</tr>
<tr>
<td>RIPSAS</td>
<td>POSEIDON SUR</td>
<td>07/12/1995</td>
<td>08/12/1995</td>
<td>3.583,84</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>07/12/2025</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13/08/2005</td>
<td></td>
<td>Renuncia parcial</td>
</tr>
<tr>
<td>RIPSAS CNWL</td>
<td>RODABALLO</td>
<td>19/09/1996</td>
<td>20/09/1996</td>
<td>4.954,44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>03/12/2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIPSAS CEPSA EP SL PETROLEUM</td>
<td>LUBINA</td>
<td>17/07/2012</td>
<td>18/07/2012</td>
<td>4.165,25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17/07/2042</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.4. PRODUCCIÓN INTERIOR DE HIDROCARBUROS

6.4.1. Petróleo

La producción nacional de crudo durante el año 2016 ascendió a 141 kTm. (aproximadamente 1,03 millones de barriles de petróleo), lo cual supone un descenso de la producción del 39% respecto al año anterior, en el que ya se constataba una tendencia descendente en la producción (caída del 24% en 2015). No obstante, hay que tener en cuenta que, el reducido número de campos y la limitada producción nacional, prácticamente testimonial, hacen que cualquier cambio se traduzca en grandes variaciones de la producción de un año a otro.

la producción como el número de campos de gas, cualquier cambio en su operación da lugar a cambios notables en la producción final.

Destacar que el yacimiento «El Ruedo», que ya no produjo en 2015, continúa sin producir en 2016. Asimismo, hay que considerar que «Marismas» careció de producción durante 2016, aunque si bien es verdad, su producción en 2015 puede considerarse que fue residual.

6.4.2. Gas natural

Durante el año 2016 se produjeron 620 GWh de gas natural, equivalentes a 58 millones de m³(n), cifra un 11% inferior que la del ejercicio anterior. Como en el caso del crudo, al ser reducida tanto
7. SECTORES DEL GAS NATURAL Y PRODUCTOS PETROLÍFEROS
7.1. SECTOR DEL GAS NATURAL

7.1.1. Evolución de la demanda

La demanda de gas natural en el mercado español alcanzó en 2016 los 321,5 TWh, lo que supuso un incremento del 2,1% respecto al consumo del año 2015, continuando la tendencia creciente iniciada en 2015.

La demanda del sector convencional, que engloba el consumo industrial (incluida la cogeneración) y el consumo doméstico y comercial, alcanzó 262 TWh, lo que supuso un crecimiento del 3,3% respecto al año anterior. En términos porcentuales, el incremento fue homogéneo en los distintos grupos, mientras que, en términos absolutos, el crecimiento de la demanda convencional de 8,3 TWh se concentró en el sector industrial, que creció 5,9 TWh.

El menor consumo de gas en las centrales de ciclo combinado provocó que el consumo del sector eléctrico registrase un descenso del 2,6% respecto al ejercicio anterior, alcanzando 60 TWh. A pesar de esta leve contracción de la demanda eléctrica, se confirma una cierta estabilidad desde el año 2013.

En el cuadro 1.1 «Demanda de gas natural» se refleja la variación de la demanda para el periodo 2008-2016, distinguiendo entre mercado convencional y sector eléctrico.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Convencional</td>
<td>262</td>
<td>244</td>
<td>256</td>
<td>263</td>
<td>278</td>
<td>277</td>
<td>250</td>
<td>254</td>
<td>262</td>
<td>3,3%</td>
</tr>
<tr>
<td>Sector eléctrico</td>
<td>187</td>
<td>161</td>
<td>136</td>
<td>110</td>
<td>85</td>
<td>57</td>
<td>52</td>
<td>61</td>
<td>60</td>
<td>–2,5%</td>
</tr>
<tr>
<td>Total</td>
<td>449</td>
<td>402</td>
<td>401</td>
<td>373</td>
<td>363</td>
<td>334</td>
<td>302</td>
<td>315</td>
<td>322</td>
<td>2,2%</td>
</tr>
</tbody>
</table>

FUENTE: ENAGAS GTS.

Distribución geográfica de la demanda

Las tres primeras comunidades autónomas consumidoras de gas natural durante 2016 fueron Cataluña, Andalucía y Comunidad Valenciana, que aglutinan el 46% de la demanda nacional, liderando tanto la demanda del sector industrial como de la generación eléctrica.

La gran demanda industrial de gas de estas tres regiones se explica por la presencia de sectores intensivos en el consumo de gas como son la industria química y de refino de petróleo el caso de Cataluña y Andalucía y la industria de materiales de la construcción, con cogeneraciones asociadas, en el caso de la Comunidad Valenciana.

Distribución de la demanda por sectores industriales

La demanda industrial, con 188 TWh, supuso el 72% de la demanda convencional y el 58% de la demanda nacional total, lo que pone de manifiesto que ciertos sectores manufactureros tiene un impacto acusado en la demanda de gas.

En relación con la demanda industrial de gas cabe señalar la importancia del sector refino (22%), la industria química y farmacéutica (14%), cogeneraciones (13%) y materiales de construcción.
Por otra parte, hay que tener en cuenta el biogás procedente de la planta de Vicálvaro que alcanzó un volumen de producción en 2016 de 75 GWh que fue íntegramente inyectado a la red de transporte.

7.1.2. Oferta de gas natural

En el año 2016 la práctica totalidad de los abastecimientos de gas natural para el consumo interior se produjo a través de importaciones de terceros países e intercambios comunitarios a causa de la irrelevante producción nacional.

Producción nacional

La producción de los yacimientos nacionales fue de 620 GWh, apenas un 0,19% del total de aprovisionamientos del sistema gasista español, siendo los principales orígenes los yacimientos de Viura (547 GWh, el 88% de la producción), Poseidón y El Romeral.

Importaciones

La escasa aportación de la producción nacional precisó de un flujo de importaciones de 364.325 GWh procedente de 9 países distintos. La cifra global de importaciones se mantuvo sin variaciones respecto al ejercicio anterior ya que, como se analizará posteriormente, el crecimiento de la demanda se ha absorbido mediante una reducción de las exportaciones de gas natural líquido (GNL) previamente importado.

Argelia se mantiene como primer proveedor, alcanzando el 57% de los aprovisionamientos, seguido por Nigeria (14%), Noruega (11%) y Qatar (8%). Como muestra del pujante mercado

(11%). Respecto al año 2015 el principal crecimiento de la demanda de gas se registró en estos dos últimos sectores, con aumentos del 9% y el 13% respectivamente.
mundo de GNL y de las facilidades de aprovisionamiento que proporciona la capacidad de regasificación española, destaca el crecimiento de importaciones de orígenes tan distantes como Perú (6%) o los Estados Unidos.

Por cuarto año consecutivo, los suministros en forma de gas natural (GN) superaron a los de GNL, constituyendo el primero un 58% del aprovisionamiento, mientras que el 42% restante llegó en forma de GNL, manteniéndose los mismos porcentajes que en el año 2015.

Los gasoductos internacionales más relevantes desde el punto de vista de los aprovisionamientos de GN fueron el Magreb (46%), con punto de entrada a la península por Zahara de los Atunes y Medgaz (36%), con entrada por Almería, proporcionando las interconexiones con Francia el resto del gas consumido (18%). En 2016 las importaciones de gas natural a través de las citadas conexiones internacionales se sitúan en 211.119 GWh, manteniéndose en cifras similares a las del año 2015.

En relación al GNL, durante el año 2016, 190 buques descargaron 153.200 GWh en las plantas de regasificación españolas. Las plantas más activas en la descarga de buques fueron las localizadas en Sagunto, Huelva y Barcelona, con 51, 46 y 44 buques respectivamente, siendo la planta de Huelva la que lideró la clasificación del volumen de gas descargado.

Exportaciones

La carga de buques, es decir, la exportación de GNL previamente importado a la península, experimentó un pronunciado descenso en el año 2016,

<table>
<thead>
<tr>
<th>Origen de los suministros</th>
<th>GWh 2015</th>
<th>% 2015</th>
<th>GWh 2016</th>
<th>% 2016</th>
<th>2016/2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argelia GN</td>
<td>175.346</td>
<td>59,8%</td>
<td>173.539</td>
<td>56,72%</td>
<td>~4,8%</td>
</tr>
<tr>
<td>Argelia GNL</td>
<td>42.081</td>
<td>13,4%</td>
<td>33.498</td>
<td>10,9%</td>
<td>~21,6%</td>
</tr>
<tr>
<td>Angola GNL</td>
<td>0</td>
<td>0,00%</td>
<td>1.040</td>
<td>0,31%</td>
<td>~97%</td>
</tr>
<tr>
<td>Nigeria</td>
<td>43.372</td>
<td>13,7%</td>
<td>52.762</td>
<td>16,3%</td>
<td>~21%</td>
</tr>
<tr>
<td>Qatar GNL</td>
<td>34.022</td>
<td>10,6%</td>
<td>28.943</td>
<td>8,8%</td>
<td>~20%</td>
</tr>
<tr>
<td>Estados Unidos GNL</td>
<td>0</td>
<td>0,00%</td>
<td>846</td>
<td>0,24%</td>
<td>~99%</td>
</tr>
<tr>
<td>Perú GN</td>
<td>10.794</td>
<td>3,3%</td>
<td>20.151</td>
<td>5,8%</td>
<td>~86%</td>
</tr>
<tr>
<td>T&T GNL</td>
<td>12.755</td>
<td>4,0%</td>
<td>7.306</td>
<td>2,1%</td>
<td>~42%</td>
</tr>
<tr>
<td>Noruega GNL</td>
<td>7.984</td>
<td>2,4%</td>
<td>8.667</td>
<td>2,4%</td>
<td>~5,8%</td>
</tr>
<tr>
<td>Noruega GN</td>
<td>24.146</td>
<td>7,4%</td>
<td>29.748</td>
<td>8,3%</td>
<td>~23%</td>
</tr>
<tr>
<td>Francia GN</td>
<td>12.752</td>
<td>3,9%</td>
<td>7.819</td>
<td>2,1%</td>
<td>~38,7%</td>
</tr>
<tr>
<td>Portugal GN</td>
<td>5</td>
<td>0,0%</td>
<td>8</td>
<td>0,0%</td>
<td>60,0%</td>
</tr>
<tr>
<td>Nacional GN</td>
<td>776</td>
<td>0,2%</td>
<td>695</td>
<td>0,2%</td>
<td>~10,5%</td>
</tr>
<tr>
<td>Omán GNL</td>
<td>964</td>
<td>0,3%</td>
<td>0</td>
<td>0,0%</td>
<td>~100,0%</td>
</tr>
<tr>
<td>TOTAL APROVISIONAMIENTOS</td>
<td>364.949</td>
<td>100,00%</td>
<td>365.020</td>
<td>100,00%</td>
<td>0,0%</td>
</tr>
</tbody>
</table>

FUENTE: CORES.
pasando de un volumen de 16.007 GWh en 2015 a únicamente 1.379 GWh en el año 2016 distribuidos en 4 buques.

Las exportaciones de GN por las interconexiones internacionales alcanzaron 42.879 GWh, lo que supone un crecimiento del 4,8% respecto al año 2015, distribuyéndose entre el «Virtual Interconnection Point» (en adelante VIP) Ibérico (punto de interconexión virtual con Portugal) que engloba las interconexiones físicas de Tuy y Badajoz) con un 85% del total y el VIP Pirineos (punto de interconexión virtual con Francia que incluye las interconexiones físicas de Irún y Larrau), mediante el que se vehiculó el restante 15%.

En conjunto, las exportaciones del sistema descendieron en 12.660 GWh respecto a 2015 básicamente por la reducción de las operaciones de carga de buques.

<table>
<thead>
<tr>
<th>TABLA 7.3. MOVIMIENTOS EN CONEXIONES INTERNACIONALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWh</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Tarifa</td>
</tr>
<tr>
<td>Almería</td>
</tr>
<tr>
<td>CCII Francia (VIP Pirineos)</td>
</tr>
<tr>
<td>CCII Portugal (VIP Ibérico)</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

FUENTE: ENAGAS GTS. Informe «El Sistema Gasista 2016».

<table>
<thead>
<tr>
<th>TABLA 7.4. SALIDAS DE GAS NATURAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salidas Sistema</td>
</tr>
<tr>
<td>GWh</td>
</tr>
<tr>
<td>Recarga buques</td>
</tr>
<tr>
<td>Salidas VIP Ibérico</td>
</tr>
<tr>
<td>Salidas VIP Portugal</td>
</tr>
<tr>
<td>TOTAL SALIDAS</td>
</tr>
</tbody>
</table>

FUENTE: ENAGAS GTS.

<table>
<thead>
<tr>
<th>TABLA 7.5. SALDO ENTRADAS/SALIDAS DE GAS NATURAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saldo Entradas/Salidas Sistema</td>
</tr>
<tr>
<td>GWh</td>
</tr>
<tr>
<td>Total aprovisionamientos (1)</td>
</tr>
<tr>
<td>Nacional GN (2)</td>
</tr>
<tr>
<td>Total importaciones (3)=(1)-(2)</td>
</tr>
<tr>
<td>Total salidas (4)</td>
</tr>
<tr>
<td>TOTAL IMPORTACIONES NETAS (3)-(4)</td>
</tr>
</tbody>
</table>

FUENTE: ENAGAS GTS.
7.1.3. **Estructura empresarial del sector del gas natural en España**

Empresas Transportistas

Las empresas transportistas son aquellas sociedades mercantiles autorizadas para la construcción, operación y mantenimiento de instalaciones de regasificación de gas natural licuado, de transporte o de almacenamiento básico de gas natural.

En el año 2016 se encontraban registradas como transportistas las siguientes empresas:

- Enagas Transporte, S.A., principal empresa transportista en España (con una cuota del 85%).
- Enagas Transporte del Norte, S.A.U.
- Bahía de Bizkaia Gas, S.L. (BBG).
- Regasificadora del Noreste, S.A.
- Gas Natural Transporte, SDG, S.L.
- Gas Natural Distribución, SDG, S.A.
- Redexis Gas, S.A.
- Redexis Infraestructuras, S.L.U.
- Redexis Gas Murcia, S.A.
- Gas Navarra, S.A.
- Gas Extremadura Transportista, S.L.
- Gas Natural Andalucía, S.A.
- Gas Natural Castilla - La Mancha, S.A.

Se ha de resaltar que algunas de las empresas anteriores son titulares de redes de distribución, ya que, conforme a lo dispuesto en el artículo 58.c de la Ley 34/1998, de 7 de octubre, las empresas distribuidoras pueden construir, mantener y operar redes de transporte secundario.

Empresas distribuidoras

Son aquellas sociedades mercantiles autorizadas para la construcción, operación y mantenimiento de instalaciones de distribución destinadas a transportar el gas hasta puntos de consumo con presión de suministro igual o inferior a 16 bar.

Las empresas distribuidoras que actualmente figuran en el registro de empresas distribuidoras de gas natural son las siguientes:

- Nortegas Energía Distribución, S.A.U.
- Redexis Gas Distribución, S.A.
- Distribución y Comercialización de Gas Extremadura, S.A.
- Tolosa Gas, S.A.
- Gas Natural Catalunya SDG, S.A.
- Gas Natural Andalucía, S.A.
- Gas Natural Castilla-La Mancha, S.A.
- Gas Natural Castilla y León, S.A.
- CEGAS, S.A.
- Gas Galicia SDG, S.A.
- Redexis Gas Murcia, S.A.
- Gas Navarra, S.A.
- Gas Natural Rioja, S.A.
- Gasificadora Regional Canaria, S.A.
- Madrileña Red de Gas, S.A.
- Gas Natural Madrid, S.A.
- Gas Natural Aragón SDG, S.A.
- Gas Natural Redes de Distribución de Gas SDG, S.A.

Empresas comercializadoras

Son las sociedades mercantiles que, accediendo a las instalaciones de terceros, en los términos
citado listado superaba las 150, de las cuales estaban operativas a lo largo del año 2016 las siguientes:

- Aldro Energía y Soluciones, S.L.U.
- Alpiq Energía España, S.A.U.
- Alpiq AG
- Audax Energía, S.L.U.
- Axpo Iberia, S.L.
- Bahia de Bizkaia Electricidad, S.L.
- BP Gas Europe, S.A.U.
- Catgas Energía, S.A.
- Cepsa Comercializadora Petróleo, S.A.
- Cepsa Gas Comercializadora S.A.
- Clidom Energy, S.L.
- Cringas, S.L.
- Danske Commodities AS
- Dufenergy Trading, S.A.
- EDP Comercializadora S.A.U.
- EDP Comercializadora de Último Recurso, S.A.
- EDP Energía Gas, S.L.
- Endesa Energía, S.A.
- Endesa Energía XXI, S.L.U.
- Energía VM Gestión de Energía, S.L.U.
- Engie España, S.L.
- Engie Global Markets, S.A.
- Engie, S.A.
- ENI SpA
- ENI Trading &Shipping, S.A.
- Factor Energía, S.A.
- Fenie Energía, S.A.
- Fusiona Soluciones Energéticas, S.A.
- Futura Energía y Gas, S.L.
- Galp Energía España S.A.U.
- Galp Gas Natural, S.A.
- Gas Natural Comercializadora, S.A.
- Gas Natural Servicios SDG, S.A.

El listado completo de las empresas que pueden ejercer la actividad de comercialización de gas natural se encuentra publicado en la página web de la Comisión Nacional de los Mercados y la Competencia. (https://www.cnmc.es/ambitos-de-actuacion/energia/mercados-gas#listados)

En abril de 2017 el número de empresas comercializadoras de gas natural inscritas en el
El Gestor Técnico del Sistema

Es el responsable de la gestión técnica de la red básica y de transporte secundario con la misión de garantizar la continuidad y seguridad del suministro de gas natural y la correcta coordinación de todas las instalaciones del sistema: plantas de regasificación, almacenamientos subterráneos y redes de transporte y distribución.

La Ley 12/2007, de 2 de julio, por la que se modificó la ley 34/1998, de 7 de octubre, con el fin de adaptarla a lo dispuesto en la Directiva 2003/55/CE sobre normas comunes para el mercado interior del gas natural, encomendó la misión de Gestor Técnico del Sistema a ENAGAS, S.A., en calidad de principal transportista de gas en España, obligando a separar las actividades que realizaba como gestor del sistema de aquéllas que desempeña como transportista. Al objeto de garantizar su independencia y objetividad en el desarrollo de sus funciones.

Posteriormente, la Ley 12/2011, de 27 de mayo de 2011, sobre responsabilidad civil por daños nucleares o producidos por materiales radiactivos, modificó nuevamente la Ley 34/1998, de 7 de octubre, estableciendo la obligación de que ENAGAS, S.A. constituyese dos sociedades filiales distintas con las funciones de Gestor Técnico del Sistema y transportista respectivamente, mandato que fue llevado a efectos el 2 de julio de 2012, mediante la inscripción en el Registro Mercantil del acuerdo de segregación y la creación de dos filiales, ENAGAS Transporte S.A.U y ENAGAS GTS, S.A.U.
Adicionalmente, las competencias del Gestor Técnico se han actualizado en la Circular 2/2015, de 22 de julio, de la Comisión Nacional de los Mercados y la Competencia, por la que se establecen las normas de balance en la red de transporte del sistema gasista, que responsabiliza a este de realizar las acciones de balance necesarias para mantener el sistema en equilibrio.

Por otra parte, el Real Decreto 984/2015, de 30 de octubre, por el que se regular el mercado organizado de gas y el acceso de terceros a las instalaciones del sistema de gas natural otorgó al Gestor Técnico del Sistema la competencia para gestionar la Plataforma Telemática Única de Contratación y Solicitud de Capacidad, herramienta informática que concentrará la contratación de todas las instalaciones del sistema, con la excepción de las interconexiones internacionales que tienen su propia regulación. Asimismo, la herramienta integrará el mercado secundario de capacidad y mantendrá comunicación constante con el Gestor de Garantías y con la herramienta de gestión logística de nominaciones y programaciones SL-ATR.

Por último, la Orden IET/2736/2015, de 17 de diciembre, por la que se establecen los peajes y cánones asociados al acceso de terceros a las instalaciones gasistas y la retribución de las actividades reguladas para el año 2016, en su artículo 7º otorgó al Gestor Técnico del Sistema la responsabilidad de la adquisición del gas de operación de las instalaciones de transporte y almacenamiento subterráneo básico, así como la parte del gas de operación de las plantas de regasificación sufragado por el sistema gasista.

El Gestor del Mercado Organizado de Gas

La Ley 8/2015, de 21 de mayo, modificó la Ley 34/1998, de 7 de octubre, determinando la creación de un mercado organizado de gas natural donde realizar transacciones de compra y venta con entrega en el punto virtual de balance (PVB) del sistema de transporte y distribución, con entrega física de gas y plazos de entrega no superiores al mes siguiente al de la transacción. Este mercado se constituye como Plataforma de Comercio, conforme al artículo 10º del Reglamento (UE) de la Comisión N.º 312/2014, de 26 de marzo de 2014, por el que se establece un código de red sobre el balance de gas en las redes de transporte.

Como responsable de la gestión de dicho mercado, la ley definió la figura del Operador de Mercado estableciendo que en su capital social deberían participar en un 30% los operadores de los mercados eléctricos español y portugués, en una proporción de 2/3 y 1/3 respectivamente. Asimismo, los gestores técnicos de los sistemas gasistas español y portugués deberán participar en un 20% del capital, con las mismas proporciones que el caso de los operadores de los mercados eléctricos, mientras que el resto del capital queda abier to a la participación de cualquier inversor, aunque se limita al 30% la participación de sociedades que realicen actividades en el sector energético.

La sociedad que cumple los requisitos anteriores es MIBGAS, S.A, con las siguientes funciones:

- Formalizar la admisión de los agentes.
- Gestionar las garantías de participación en el mercado.
7.1.4. Infraestructuras de transporte de gas natural

El sistema gasista español cuenta en la actualidad, con seis terminales de regasificación con una capacidad de almacenamiento de 3.316.500 m³ de GNL repartidos en 25 tanques de GNL, una capacidad máxima de vaporización de 6.862.800 Nm³/h, y 8 atrakes capaces de descargar buques metaneros de hasta 270.000 m³ de capacidad.

El Real Decreto-ley 13/2012, de 30 de marzo, en sus disposiciones transitorias tercera y cuarta, determinó la suspensión de las autorizaciones de nuevas plantas de regasificación, instalaciones de transporte y estaciones de regulación y medida, lo que ha influido en el reducido número de instalaciones puestas en servicio a lo largo del año 2016, al igual que ocurrió en años precedentes. En este contexto, como hechos relevantes durante el año 2016 hay que destacar la tramitación y construcción de los proyectos de las instalaciones que se indican a continuación.

En relación con las plantas de regasificación de gas natural licuado:

TABLA 7.6. CAPACIDADES DE LAS PLANTAS DE REGASIFICACIÓN EN OPERACIÓN

<table>
<thead>
<tr>
<th>Planta de regasificación</th>
<th>Capacidad de almacenamiento m³ (n) GNL</th>
<th>Capacidad de vaporización m³/n/h</th>
<th>Nº de tanques</th>
<th>Capacidad carga cisternas (GWh/día)</th>
<th>Nº de atrakes</th>
<th>Capacidad descarga buques m³ (n) GNL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barcelona (ENAGAS)</td>
<td>760.000</td>
<td>1.950.000</td>
<td>6</td>
<td>15</td>
<td>2</td>
<td>266.000</td>
</tr>
<tr>
<td>Huelva (ENAGAS)</td>
<td>619.500</td>
<td>1.350.000</td>
<td>5</td>
<td>15</td>
<td>1</td>
<td>173.400</td>
</tr>
<tr>
<td>Cartagena (ENAGAS)</td>
<td>587.000</td>
<td>1.350.000</td>
<td>5</td>
<td>15</td>
<td>1</td>
<td>266.000</td>
</tr>
<tr>
<td>Bilbao (BBG)</td>
<td>450.000</td>
<td>800.000</td>
<td>3</td>
<td>4,5</td>
<td>1</td>
<td>270.000</td>
</tr>
<tr>
<td>Sagunto (SAGUNTO)</td>
<td>600.000</td>
<td>1.000.000</td>
<td>4</td>
<td>10,5</td>
<td>1</td>
<td>266.000</td>
</tr>
<tr>
<td>Mugardos (REGANOSA)</td>
<td>300.000</td>
<td>412.800</td>
<td>2</td>
<td>10,5</td>
<td>1</td>
<td>266.000</td>
</tr>
<tr>
<td>Total</td>
<td>3.316.500</td>
<td>6.862.800</td>
<td>25</td>
<td>79,5</td>
<td>8</td>
<td>Hasta 270.000</td>
</tr>
</tbody>
</table>

FUENTE: ENAGAS GTS. Informe «El Sistema Gasista 2016».
Asimismo, continúa la tramitación de la autorización administrativa de las dos plantas de regasificación de las Islas Canarias, ubicadas en Granadilla de Abona (Tenerife) y Arinaga (Gran Canaria) y promovidas por GASCAN. Por su parte, la planta de ENAGAS, S.A. en el puerto de El Musel, en Gijón, no se encuentra en operación, en aplicación de la disposición transitoria tercera del Real Decreto-ley 13/2012, de 30 de marzo.

En relación con la red de transporte y distribución:

Tras la construcción de 1.200 nuevos kilómetros de canalizaciones durante el año 2016, la longitud total de la red de transporte y distribución ha superado la cifra de 85.000 km, de los cuales 11.369 km corresponden a gasoductos de transporte primario.

En cuanto a gasoductos de transporte, como hechos relevantes cabe destacar la construcción y entrada en operación durante 2016 de las infraestructuras de transporte siguientes promovidas por Redexis Infraestructuras, S.L.U:

- Gasoducto de transporte primario Ca’s Tresorrer-Manacor-Felanitx.

- Gasoducto Villanueva del Arzobispo-Castellar.

Por otra parte, durante 2016, se ha autorizado la transmisión de la titularidad de proyectos de distribución gasista competencia de la Administración General del Estado, mediante las siguientes autorizaciones:

- Resolución de la Dirección General de Política Energética y Minas, de 22 de enero de 2016, por la que se autoriza la transmisión de la titularidad de autorizaciones e instalaciones de Gas Natural Distribución SDG, S.A. a favor de Gas Natural Infraestructuras Distribución S.A. (BOE 28/01/2016).

- Resolución de la Dirección General de Política Energética y Minas, de 22 de enero de 2016, por la que se autoriza la transmisión de la titularidad de autorizaciones e instalaciones de Gas Natural Distribución SDG, S.A. a favor de GAS Navarra S.A. (BOE: 28/01/2016).

- Resolución de la Dirección General de Política Energética y Minas, de 21 de septiembre de 2016, por la que se autoriza la transmisión de la titularidad de autorizaciones e instalacio-

<table>
<thead>
<tr>
<th>Planta de regasificación</th>
<th>Capacidad de almacenamiento (m³)</th>
<th>Capacidad de vaporización (m³/h)</th>
<th>Nº de tanques</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Musel (ENAGAS)</td>
<td>300.000</td>
<td>800.000</td>
<td>2</td>
</tr>
<tr>
<td>Tenerife (GASCAN)</td>
<td>150.000</td>
<td>150.000</td>
<td>1</td>
</tr>
<tr>
<td>Gran Canaria (GASCAN)</td>
<td>150.000</td>
<td>150.000</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>600.000</td>
<td>1.100.000</td>
<td>4</td>
</tr>
</tbody>
</table>

FUENTE: ENAGAS GTS.

- Resolución de la Dirección General de Política Energética y Minas, de 21 de septiembre de 2016, por la que se autoriza la transmisión de la titularidad de autorizaciones e instalaciones de Gas Natural Distribución SDG, S.A. a favor de Gas Navarra, S.A. (BOE: 25/10/2016).

- Resolución de la dirección general de política energética y minas, de 21 de septiembre de 2016, por la que se autoriza la transmisión de la titularidad de autorizaciones e instalaciones de distribución de Gas Natural Distribución SDG, S.A. a favor de Gas Natural Rioja, S.A. (BOE: 25/10/2016).

Asimismo, al término de 2016 España cuenta con 7,7 millones de puntos de suministro, gracias a la incorporación de 89,973 nuevas conexiones y manteniendo la línea ascendente habitual de cada año, como se puede apreciar en la tabla siguiente.

La red básica de gasoductos dispone de las siguientes conexiones internacionales, que se configuran como las entradas de gas natural al sistema gasista por gasoducto, mediante las que se transporta una parte muy importante de los aprovisionamientos españoles:

- Conexión Norte con el sistema francés a través de Larrau e Irún, constituyendo el VIP Pirineos («Virtual Interconnection Point»).

- Conexión con Portugal a través de Badajoz y Tuy, constituyendo el VIP Ibérico.

- Conexión con el norte de África:
 - Gasoducto Magreb-Europa, con entrada en la península Ibérica por Zahara de los Atunes (Cádiz), donde finalizan los dos tramos submarinos que cruzan el estrecho de Gibraltar.
 - Gasoducto Medgaz (Argelia-Almería).

|-----|------|------|------|------|------|------|------|------|------|------|------|

<table>
<thead>
<tr>
<th>Entrada</th>
<th>Verano</th>
<th>Salida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invierno</td>
<td>Verano</td>
<td>Invierno</td>
</tr>
<tr>
<td>Portugal-España (VIP.PT.IBÉRICO)</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Francia-España (VIP.FR.PIRINEOS)</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td>Norte de África- España</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarifa</td>
<td>444</td>
<td>444</td>
</tr>
<tr>
<td>Almería</td>
<td>306</td>
<td>306</td>
</tr>
</tbody>
</table>

Fuente: ENAGAS GTS.
7.1.5. Legislación

La normativa publicada durante el año 2016 relativa al sector del gas natural es la siguiente:

Tarifas y peajes:

- Resolución de 21 de enero de 2016, de la Dirección General de Política Energética y Minas, por la que se corrigen errores en la de 23 de diciembre de 2015, por la que se publica la tarifa de último recurso de gas natural (BOE 26/01/2016).

- Orden IET/274/2016, de 29 de febrero, por la que se corrigen errores en la Orden IET/2736/2015, de 17 de diciembre, por la que se establecen los peajes y cánones asociados al acceso de terceros a las instalaciones gasistas y la retribución de las actividades reguladas para el 2016 (BOE 04/03/2016).

- Resolución de 29 de marzo de 2016, de la Dirección General de Política Energética y Minas, por la que se publica la tarifa de último recurso de gas natural (BOE 31/03/2016).

- Resolución 26 de septiembre de 2016, de la Dirección General de Política Energética y Minas, por la que se publica la tarifa de último recurso de gas natural (30/09/2016).

- Circular 3/2016, de 16 de noviembre, de la Comisión Nacional de los Mercados y la Competencia, por la que se modifica la Circular 1/2015, de 22 de julio, de desarrollo de la información regulatoria de costes relativa a las actividades...
reguladas de transporte, regasificación, almacenamiento y gestión técnica del sistema de gas natural, así como transporte y operación del sistema de electricidad (BOE 8/12/2016).

• Orden ETU/1977/2016, de 23 de diciembre, por la que se establecen los peajes y cánones asociados al acceso de terceros a las instalaciones gasistas y la retribución de las actividades reguladas para 2017 (BOE 29/12/2016).

• Resolución de 29 de diciembre de 2016, de la Secretaría de Estado de Energía, por la que se aprueba el contrato marco de accesos a las instalaciones del sistema gasista español (BOE 05/08/2016).

• Resolución de 6 de junio de 2016, de la Secretaría de Estado de Energía, por la que se aprueban diversas disposiciones sobre el mercado organizado de gas (BOE 11/06/2016).

Normas de gestión técnica del sistema y protocolos de detalle:

Mercado organizado, Circular de Balance, acceso de terceros:

• Resolución de la Comisión Nacional de los Mercados y la Competencia, de 1 de marzo de 2016, por la que se aprueba el procedimiento de habilitación y baja de usuarios con cartera de balance en el punto virtual de balance y el contrato marco (sin publicar en el BOE).

• Resolución de 12 de mayo de 2016, de la Comisión Nacional de los Mercados y la Competencia, por la que se aprueba la metodología de cálculo de tarifas de desbalance diario y el procedimiento de liquidación de los desbalances diarios de los usuarios y acciones de balance de compraventa de productos normalizados del Gestor Técnico del Sistema.

• Resolución de 2 de agosto de 2016, de la Secretaría de Estado de Energía, por la que se aprueba el procedimiento de liquidación de los desbalances diarios de los usuarios de los puntos de conexión distribución-distribución (PCDD) (BOE 10/05/2016).

• Resolución de 4 de mayo de 2016, de la Dirección General de Política Energética y Minas, por la que se modifican los protocolos de detalle PD-06 «Regla operativa de las actividades de descarga de buques metaneros» y PD-02 «Procedimiento de reparto en puntos de conexión transporte-distribución (PCTD) y en puntos de conexión distribución-distribución (PCDD)» (BOE 10/05/2016).
Almacenamientos subterráneos:

- Resolución de 29 de febrero de 2016, de la Dirección General de Política Energética y Minas por la que se establecen determinados aspectos relacionados con la subasta de capacidad de almacenamiento básico para el periodo comprendido entre el 1 de abril de 2016 y el 31 de marzo de 2017.

- Resolución de 29 de enero de 2016, de la Dirección General de Política Energética y Minas, por la que se publica la capacidad asignada y disponible en los almacenamientos subterráneos básicos de gas natural para el periodo comprendido entre el 1 de abril de 2016 y el 31 de marzo de 2017 (BOE 01/02/2016).

- Resolución de la Dirección General de Política Energética y Minas, de 15 de marzo, por la que se adjudica la capacidad de almacenamiento básico para el periodo comprendido entre el 1 de abril de 2016 y el 31 de marzo de 2017 (sin publicar en el BOE).

Otras disposiciones:

- Resolución de 25 de enero de 2016, de la Dirección General de Política Energética y Minas, por la que se determina la valoración de los saldos de mermas de las plantas de regasificación durante el año 2013 (BOE 28/01/2016).

- Resolución de 25 de enero de 2016, de la Dirección General de Política Energética y Minas, por la que se determina la valoración de los saldos de mermas de las plantas de regasificación durante el año 2014 (BOE 28/01/2016).
7.2. SECTOR DE PRODUCTOS DERIVADOS DEL PETRÓLEO (HIDROCARBUROS LÍQUIDOS Y GLP)

7.2.1. Evolución de la demanda de productos petrolíferos

Durante el año 2016, el consumo de productos petrolíferos en España fue de 57,01 millones de toneladas, un 1,8% más que en 2015.

7.2.2. Oferta de petróleo. Importaciones de crudo

En el año 2016 México se sitúa como el mayor suministrador, presentando una tasa interanual positiva del 14,40%. En segundo y tercer lugar se encuentran Nigeria (12,6%) y Arabia Saudí (10,3%). Por zonas geográficas, ascienden las importaciones de crudo con origen en Norte América (+27,3%), Europa y Euroasia (+38,4%) y Oriente Medio (+54,1%). Por su parte, disminuyen las provenientes de América Central y del Sur (~48,7%) y de África (~30,0%).

<table>
<thead>
<tr>
<th>Consumo de productos petrolíferos en España</th>
<th>2016</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kt</td>
<td>Variación 2016-2015</td>
<td>Estructura de consumo</td>
</tr>
<tr>
<td>Gases licuados del petróleo (G.L.P)</td>
<td>2.031</td>
<td>8,2%</td>
<td>3,6%</td>
</tr>
<tr>
<td>Gasolinas</td>
<td>4.756</td>
<td>2,3%</td>
<td>8,3%</td>
</tr>
<tr>
<td>Querosenos</td>
<td>5.894</td>
<td>7,1%</td>
<td>10,3%</td>
</tr>
<tr>
<td>Gasóleos</td>
<td>30.273</td>
<td>1,6%</td>
<td>53,1%</td>
</tr>
<tr>
<td>Fuelóleos</td>
<td>8.620</td>
<td>4,6%</td>
<td>15,3%</td>
</tr>
<tr>
<td>Otros productos (*)</td>
<td>5.437</td>
<td>-8,5%</td>
<td>9,5%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>57.011</td>
<td>1,8%</td>
<td>100%</td>
</tr>
</tbody>
</table>

(*) Incluye lubricantes, productos asfálticos, coque y otros.

FUENTE: CORES. Boletín estadístico de Hidrocarburos, diciembre 2016.
7.2.3. Estructura empresarial del sector de hidrocarburos líquidos en España

Operadores al por mayor

De acuerdo con la normativa vigente, son operadores al por mayor aquellos sujetos que comercialicen productos petrolíferos para su posterior distribución al por menor, de acuerdo con lo dispuesto en el artículo 42 de la Ley 34/1998, de 7 de octubre. Asimismo, en dicho artículo se establece que la Comisión Nacional de Energía, actualmente Comisión Nacional de los Mercados y la Competencia, publicará en su página web (www.cnmc.

TABLA 7.11.

<table>
<thead>
<tr>
<th>Estructura empresarial del sector de hidrocarburos líquidos en España</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLA 7.11.</td>
</tr>
<tr>
<td>Consumo de gasolinas kt Variación 2016–2015 Estructura de consumo</td>
</tr>
<tr>
<td>2016</td>
</tr>
<tr>
<td>Consumo de gasolinas</td>
</tr>
<tr>
<td>kt</td>
</tr>
<tr>
<td>95 I.O.</td>
</tr>
<tr>
<td>98 I.O.</td>
</tr>
<tr>
<td>Gasolinas mezcla</td>
</tr>
<tr>
<td>Subtotal gasolinas auto</td>
</tr>
<tr>
<td>Otras gasolinas</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Consumo de gasóleos kt Variación 2016–2015 Estructura de consumo</td>
</tr>
<tr>
<td>Automoción (A)</td>
</tr>
<tr>
<td>kt</td>
</tr>
<tr>
<td>22.464</td>
</tr>
<tr>
<td>Biodiesel</td>
</tr>
<tr>
<td>Biodiesel mezcla</td>
</tr>
<tr>
<td>Agrícola y pesca (B)</td>
</tr>
<tr>
<td>kt</td>
</tr>
<tr>
<td>3.907</td>
</tr>
<tr>
<td>Calefacción (C)</td>
</tr>
<tr>
<td>kt</td>
</tr>
<tr>
<td>1.860</td>
</tr>
<tr>
<td>Otros gasóleos</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Consumo de querosenos kt Variación 2016–2015 Estructura de consumo</td>
</tr>
<tr>
<td>Aviación</td>
</tr>
<tr>
<td>kt</td>
</tr>
<tr>
<td>5.893</td>
</tr>
<tr>
<td>Otros</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Consumo de fuelóleos y otros productos kt Variación 2016–2015 Estructura de consumo</td>
</tr>
<tr>
<td>Fuelóleo BIA</td>
</tr>
<tr>
<td>kt</td>
</tr>
<tr>
<td>2.221</td>
</tr>
<tr>
<td>Otros</td>
</tr>
<tr>
<td>Total fuelóleos</td>
</tr>
<tr>
<td>Lubricantes</td>
</tr>
<tr>
<td>Asfaltos</td>
</tr>
<tr>
<td>Coque</td>
</tr>
<tr>
<td>Otros</td>
</tr>
<tr>
<td>Total otros productos</td>
</tr>
</tbody>
</table>

FUENTE: CORES. Boletín estadístico de Hidrocarburos, diciembre 2016.
7.2.4. Estructura empresarial del sector de GLP en España

Operadores al por mayor de GLP

Los operadores al por mayor son aquellas sociedades mercantiles que realicen las actividades de almacenamiento, mezcla y envasado, transporte y comercialización al por mayor de GLP, de acuerdo con lo dispuesto en el artículo 45 de la Ley 34/1998, de 7 de octubre. En dicho artículo, se establece que la Comisión Nacional de los Mercados y la Competencia, publicará en su página web (www.cnmc.es) un listado de los operadores al por mayor de GLP, que incluirá aquellas sociedades que hayan comunicado al Ministerio el ejercicio de esta actividad, eliminando aquellas que hayan cesado su actividad.

Los operadores al por mayor de GLP a 31 de diciembre de 2016 eran los siguientes:

- ATLAS, S.A. COMBUSTIBLES Y LUBRIFICANTES
- BP OIL ESPAÑA, S.A.
7.2.5 Infraestructuras

Refinerías

España cuenta con diez refinerías, nueve en la Península y una en las Islas Canarias, que pertenecen a tres grupos empresariales:

- Repsol YPF: refinerías de Bilbao, Coruña, Puertollano, Cartagena, Tarragona y Asesa.
– Cepsa: refinerías en Huelva, Algeciras y Tenerife.
– BP España: refinería de Castellón.

De estas refinerías, Asea se dedica exclusivamente a la producción de asfaltos. Todas ellas, excepto la de Puertollano, están situadas en el litoral, y todas las de la península están conectadas a la red de oleoductos de la Compañía Logística de Hidrocarburos, S.A. (CLH).

Durante 2016 las refinerías españolas procesaron en total 65.788 kt de crudo, un 0,2% más que en 2015.

Infraestructuras de transporte y almacenamiento de crudo y productos

Se consideran infraestructuras críticas el conjunto de refinerías y la red logística de CLH y del resto de los operadores logísticos. En la figura se muestra la situación geográfica de las refinerías españolas, de la red de oleoductos y de los parques de almacenamiento:

El sistema logístico integrado en CLH es el más relevante sistema de transporte y distribución de productos petrolíferos en España y lo componen la red de oleoductos, 40 instalaciones de almacenamiento, 27 instalaciones aeroportuarias y 2 buques tanque:

– Oleoductos: La red de oleoductos de CLH conecta 8 refinerías peninsulares con las instalaciones de almacenamiento situadas en las áreas de mayor consumo, y constituye el principal medio de transporte de la compañía. Con 4.007 kilómetros de longitud es la red civil de oleoductos más extensa de Europa Occidental.

– Instalaciones de almacenamiento: Están integradas por 40 instalaciones para todo tipo de productos petrolíferos, con una capacidad de almacenamiento de 7,4 millones de metros cúbicos.

– Buques de transporte: Son 2 buques tanque utilizados para el transporte de combustible a las instalaciones de las Islas Baleares, o a instalaciones de la península no conectadas a la red de oleoductos. Tienen una capacidad de 48.121 toneladas de peso muerto.

– Infraestructura aviación: Consiste en 27 instalaciones aeroportuarias situadas en aeropuertos españoles de la Península Ibérica e Islas Baleares, para prestar el servicio de suministro de carburante de aviación a aeronaves.

La capacidad de almacenamiento de productos petrolíferos del resto de empresas en 2016 es:

<table>
<thead>
<tr>
<th>Empresas</th>
<th>Miles de m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aegean Bunkering Las Palmas</td>
<td>60,662</td>
</tr>
<tr>
<td>Atlas</td>
<td>59,142</td>
</tr>
<tr>
<td>Biogal</td>
<td>0,120</td>
</tr>
<tr>
<td>Bp</td>
<td>53,865</td>
</tr>
<tr>
<td>Decal</td>
<td>950,000</td>
</tr>
<tr>
<td>Disa Gestión Logística</td>
<td>208,550</td>
</tr>
<tr>
<td>Ecocentros 2000</td>
<td>0,150</td>
</tr>
<tr>
<td>Esergui</td>
<td>219,500</td>
</tr>
<tr>
<td>Euroenergo</td>
<td>331,000</td>
</tr>
<tr>
<td>Felguera – IHI</td>
<td>110,000</td>
</tr>
<tr>
<td>Foresa</td>
<td>31,400</td>
</tr>
<tr>
<td>Forestal del Atlántico</td>
<td>289,000</td>
</tr>
<tr>
<td>Galp Energía España</td>
<td>207,995</td>
</tr>
<tr>
<td>Gasteco</td>
<td>0,100</td>
</tr>
<tr>
<td>Global-talke</td>
<td>ND</td>
</tr>
<tr>
<td>Gm Fuel Tank</td>
<td>0,139</td>
</tr>
<tr>
<td>Huidobro gasóleos</td>
<td>0,840</td>
</tr>
<tr>
<td>Lbc Tank terminals Santander</td>
<td>8,900</td>
</tr>
<tr>
<td>Logística juntodos</td>
<td>0,200</td>
</tr>
</tbody>
</table>
7.2.6. Legislación

La normativa publicada durante el año 2016 que afecta al sector de hidrocarburos líquidos y GLP es la siguiente:

La citada orden, en su disposición final tercera, amplía hasta el 31 de diciembre de 2018 el plazo en el que deberán estar disponibles gasolinas con un contenido máximo de oxígeno de 2,7 por ciento en masa y un contenido máximo de etanol de 5 por ciento en volumen en todas las instalaciones de suministro de este carburante, siendo estas gasolinas las de menor in-
dicé de octano comercializadas, previsto en la Orden IET/2458/2013, de 26 de diciembre, por la que se amplía el plazo previsto en el apartado 1 de la disposición transitoria segunda del Real Decreto 1088/2010, de 3 de septiembre, por el que se modifica el Real Decreto 61/2006, de 31 de enero, en lo relativo a las especificaciones técnicas de gasolinas, gasóleos, utilización de biocarburantes y contenido de azufre de los combustibles para uso marítimo, en relación con la obligación relativa a la disponibilidad de gasolina de protección.

– Orden IET/1555/2016, de 29 de septiembre, por la que se modifican las cuotas de la Corporación de Reservas Estratégicas de Productos Petrolíferos correspondientes al ejercicio 2016 aprobadas por Orden IET/2839/2015, de 23 de diciembre.

El 30 de diciembre de 2015 se publicó en el Boletín Oficial del Estado la Orden IET/2839/2015, de 23 de diciembre, por la que se aprueban las cuotas de la Corporación de Reservas Estratégicas de Productos Petrolíferos correspondientes al ejercicio 2016.

Durante el año 2016 se produjeron variaciones en algunas de las hipótesis utilizadas a finales del ejercicio 2015 en el Presupuesto de la Corporación para 2016, que se tomó como base para la aprobación de las cuotas para el citado año.

Por lo que se refiere a los gastos de la Corporación cabe señalar que en 2016 se produjo una reducción de los costes financieros como consecuencia de una evolución del Euríbor por debajo de lo previsto y una desviación a la baja de la cuenta de ingresos debido a la reducción de las peticiones de mantenimiento de días adicionales, si bien la evolución de las ventas ha estado en línea con lo presupuestado.

Como consecuencia de todo lo anterior, se produjo un exceso de recaudación en relación con el coste de las actividades, que motivó la modificación a la baja de las cuotas que corresponde abonar a CORES durante 2016, aplicables a las ventas o consumos realizados a partir del mes de septiembre de 2016, con excepción de las correspondientes a los gases licuados del petróleo y al gas natural cuyas cuotas se mantuvieron.

El Real Decreto 1716/2004, de 23 de julio, por el que se regula la obligación de mantenimiento de existencias mínimas de seguridad, la diversificación de abastecimiento de gas natural y la Corporación de Reservas Estratégicas de Productos Petrolíferos, establece en sus artículos 25 y 26 que, por orden del Ministro de Industria, Turismo y Comercio, se establecerán las cuotas unitarias por grupo de productos que, por tone-lada métrica o metro cúbico vendido o consumido, habrán de satisfacer a la Corporación los sujetos obligados a mantener existencias mínimas de seguridad de productos petrolíferos, así como las cuotas que, en función de su participa-
ción en el mercado, habrán de satisfacer anualmente a la Corporación los sujetos obligados a mantener existencias mínimas de seguridad de gases licuados del petróleo y de gas natural, y a diversificar el suministro de gas natural.

Estas cuotas tienen como finalidad financiar los costes soportados por CORES, especialmente los derivados de la constitución, almacenamiento y conservación de las existencias estratégicas de cada grupo de productos petrolíferos, las actividades de CORES relativas a los gases licuados del petróleo y al gas natural, así como el coste de las demás actividades de la Corporación, e igualmente los de constitución y mantenimiento de las existencias mínimas de seguridad correspondientes a los sujetos obligados a los que se refieren los párrafos b) y c) de los artículos 7 y 8 del Real Decreto 1716/2004.

7.3. RÉGIMEN ECONÓMICO DE LOS GASES CANALIZADOS

La Ley 34/1998, de 7 de octubre, estableció en su capítulo VII las bases del sistema económico integrado del gas natural, que incluye las retribuciones de las actividades reguladas, los peajes y cánones de acceso a las instalaciones gasistas y el procedimiento de liquidaciones.

Las materias anteriores fueron desarrolladas posteriormente en el Real Decreto 949/2001, de 3 de agosto, por el que se regula el acceso de terceros a las instalaciones gasistas y se establece un sistema económico integrado del sector de gas natural, y mediante la Orden ECO/2692/2002, de 28 de octubre, donde se reguló el procedimiento de liquidación de las obligaciones de pago y derechos de cobro necesarios para retribuir las actividades reguladas.

Como consecuencia de sucesivos déficits de recaudación anuales, causados por la caída de la demanda de gas natural, en el año 2012 se hizo un primer intento de equilibrar financieramente el sistema gasista mediante la publicación del Real Decreto-ley 13/2012, de 30 de marzo, que suspendió la autorización de nuevas instalaciones, modificó el régimen retributivo de los almacenamientos subterráneos y paralizó la puesta en servicio de la planta de regasificación de El Musel.

Estas medidas se revelaron insuficientes, por lo que, ante la previsión de que el sistema gasista finalizará el año 2014 con un déficit superior a 1.000 millones de euros, el 5 de julio de 2014 se publicó en el Boletín Oficial del Estado el Real Decreto-ley 8/2014, de 4 de julio, de aprobación de medidas urgentes para el crecimiento, la competitividad y la eficiencia, que fue posteriormente convalidado por la Ley 18/2014, de 15 de octubre, del mismo nombre.

Esta disposición acometió la reforma del régimen retributivo bajo los principios de sostenibilidad económica y equilibrio económico a largo plazo, teniendo en consideración las fluctuaciones de la demanda y sin menoscabo del principio de retribución razonable de las inversiones ni de la seguridad de suministro.

La sostenibilidad económica se materializó en dos principios: en primer lugar, cualquier medida que suponga un incremento de retribuciones de-
berá ir acompañada de una reducción equivalente de costes o de un incremento de ingresos, y en segundo lugar, para evitar la aparición de nuevos déficits temporales de la magnitud del déficit de 2014, la ley estableció la obligación de revisar los peajes y cánones de acceso en cuanto el déficit anual supere el 10% de los ingresos del ejercicio o cuando la suma del déficit anual y las anualidades reconocidas pendientes de amortizar superen el 15% de dichos ingresos.

En relación al déficit acumulado a 31 de diciembre de 2014, la ley determinó que este se abonarase durante los 15 años siguientes, contando con prioridad en el cobro sobre el resto de los ingresos regulados, debiéndose reconocer mediante orden ministerial un tipo de interés en condiciones de mercado

La ley establece periodos regulatorios de seis años, con la posibilidad de ajustes cada tres años de ciertos parámetros retributivos del sistema como son los valores unitarios de referencia por clientes y ventas, costes de operación y mantenimiento, factores de mejora de productividad, etc. en caso de que se produzcan variaciones significativas de las partidas de ingresos y costes, sin embargo deberán permanecer inalterados la tasa de rentabilidad financiera y el coeficiente de eficiencia por mejoras de productividad.

7.3.1. Tarifa de último recurso de gas natural

La Ley 34/1998, de 7 de octubre, en la actual redacción dada por la Ley 12/2007, de 2 de julio, estableció los principios del sistema de precios máximos del gas natural, gases manufacturados y gases licuados del petróleo por canalización para todo el territorio nacional, determinando en su artículo 93.3 que «El Ministro de Industria, Turismo y Comercio, previo Acuerdo de la Comisión Delegada del Gobierno para Asuntos Económicos, dictará las disposiciones necesarias para el establecimiento de la tarifa de último recurso de gas natural o un sistema de determinación y actualización automática de la misma». Este mismo artículo establece que «El sistema de cálculo de la citada tarifa incluirá de forma aditiva el coste de la materia prima, los peajes de acceso que correspondan, los costes de comercialización y los costes derivados de la seguridad de suministro», habilitando al ministro a establecer un mecanismo de subasta que «permita fijar el coste de la materia prima para el cálculo de las tarifas de último recurso, previo acuerdo de la Comisión Delegada del Gobierno para Asuntos Económicos».

Mediante el Real Decreto 1068/2007, de 27 de julio, se reguló la puesta en marcha del suministro de último recurso, nombrándose las empresas comercializadoras responsables y especificando el régimen jurídico a aplicar a los consumidores con derecho a acogerse a esta tarifa de último recurso.

Posteriormente, el Consejo de Ministros, el 3 de abril de 2009, a propuesta del Ministerio de Industria, Turismo y Comercio, adoptó el acuerdo para modificar el calendario de aplicación de la tarifa de último recurso incluido en la Ley 12/2007, limitando a partir del 1 de julio de 2009 el derecho a acogerse a la tarifa de último recurso a los
usuarios con un consumo anual igual o inferior a 50.000 kWh/año, eliminando por tanto las tarifas TUR.3 y TUR.4.

El 8 de abril de 2009 se publicó la Orden ITC/863/2009, de 2 de abril, por la que se regulan las subastas para la adquisición de gas natural que se utilizarán como referencia para la fijación de la tarifa de último recurso, mientras que el 23 de junio del mismo año se publicó la Orden ITC/1660/2009, de 22 de junio, por la que se estableció la metodología de cálculo de la tarifa de último recurso de gas natural, donde se definieron las fórmulas para la imputación en la tarifa de último recurso del coste de la materia prima, de los peajes de acceso y de los costes de comercialización.

La fórmula del coste de la materia prima se evalúa trimestralmente, trasladándose al término variable de la tarifa las variaciones que superen, al alza o a la baja, el 2%. Esta fórmula incluyó como parámetros el precio resultante de las subastas de adquisición de gas y referencias de mercados internacionales; en el caso del gas de base (suministro uniforme todo el año) se adoptó una fórmula referenciada al crudo Brent, mientras que para el gas de invierno se referenció a las cotizaciones «Henry Hub» y NBP, la fórmula incluye asimismo una prima para cubrir el riesgo de cantidad.

El 5 de febrero de 2010 se publicó el Real Decreto 104/2010, por el que se regula la puesta en marcha del suministro de último recurso en el sector del gas natural, en cuyo artículo primero se estableció que los consumidores acogidos a la tarifa de último recurso se considerarían consumidores en el mercado liberalizado, siendo de aplicación los preceptos relativos al suministro a tarifa establecidos en el título III del Real Decreto 1434/2002, de 27 de diciembre. El artículo 2º definió los derechos y obligaciones de los suministradores de último recurso, el principal de los cuales es la obligación de suministro para todos los consumidores con derecho a acogerse a esta tarifa aplicando el precio fijado por el Ministerio, sin posibilidad de descuentos. Adicionalmente este comercializador tiene la obligación de suministrar durante un mes a los consumidores sin contrato de suministro.

En el año 2015, la Orden IET/2736/2015, de 17 de diciembre, por la que se establecen los peajes y cánones asociados al acceso de terceros a las instalaciones gasistas y la retribución de las actividades reguladas para el 2016, en su disposición final segunda modificó sustancialmente la fórmula de la tarifa de último recurso. El coste de la materia prima pasó a calcularse como combinación de una referencia de gas estacional (suministrado en el primer y último trimestre del año) y del gas de base (suministro uniforme en todo el año) que corresponde a contratos a largo plazo referenciados a la cotización del crudo Brent. El valor de dichas referencias se calcula a partir de cotizaciones internacionales de precios, aplicando coeficientes de estacionalidad para cada trimestre de acuerdo al perfil medio de demanda del mercado doméstico: en el primer trimestre se aplica una ponderación de 0,579, mientras que en el cuarto es de 0,467 y en los trimestres segundo y tercero es cero.

Como coste de referencia del gas estacional se emplea el promedio entre los días 6 y 20 del mes anterior al trimestre de aplicación de las cotizaciones.
de las transacciones con entrega en el NBP (punto virtual de balance del sistema gasista británico) para el trimestre de aplicación. Como valor de referencia del gas de base se aplica la fórmula basada en las cotizaciones semestrales del crudo Brent incluida en la Orden ITC/1660/2009, de 22 de junio.

Con esta nueva orden dejan de ser de aplicación las referencias de precio de las subastas de compra de gas, que desde el 1 de enero de 2016 se han dejado de celebrar.

Asimismo, la nueva orden procedió a modificar la prima de riesgo de cantidad que protege al comercializador de las alzas en el coste del gas cuando se produzcan incrementos de demanda causados por olas de frío. Se pasa de aplicar un coeficiente fijo de 3,6% a utilizar un valor cero los trimestres segundo y tercero, cuando no hay demanda de gas estacional, mientras que para los trimestres primero y cuarto se aplica una fórmula que tiene en consideración el valor de los futuros del gas natural con entrega en el NBP en el trimestre de aplicación y el precio de las opciones «put» y «call» (derechos de compra y venta del gas a un precio determinado y hasta una fecha concreta).

7.3.2. Peajes de acceso de terceros a las instalaciones gasistas

El Real Decreto-ley 13/2012 modificó el artículo 92 de la Ley 34/1998, de 7 de octubre, otorgando a la Comisión Nacional de los Mercados y la Competencia la capacidad para establecer la metodología para el cálculo de los peajes y cánones de los servicios básicos de acceso, al objeto de transponer la Directiva 2009/73/CE sobre normas comunes para el mercado interior del gas natural, mientras que se concedió al Ministro de Industria, Energía y Turismo la facultad de aprobar los valores de dichos peajes, de acuerdo con la metodología establecida por la Comisión, y el resto de costes del sistema que sean de aplicación, previo Acuerdo de la Comisión Delegada del Gobierno para Asuntos Económicos.

Sin embargo, hasta que no se proponga y apruebe una nueva estructura de peajes, se mantiene en aplicación la estructura básica establecida en el Real Decreto 949/2001, que incluyó los siguientes peajes:

- Peaje de regasificación: inicialmente se aplicaba también al GNL cargado en cisternas e incluía 10 días de almacenamiento operativo de GNL en los tanques, que fueron reducidos a 5 días mediante el Real Decreto 1716/2004, de 23 de julio y suprimidos completamente desde el 1 de abril de 2009.

- Peaje conjunto de transporte y distribución: independiente de la distancia recorrida por el gas (de tipo «postal») y que se articula mediante un término de «reserva de capacidad» aplicado al caudal diario contratado en la entrada a la red de transporte y un término de «conducción» aplicado en el punto de salida que, a su vez, incluye un término fijo y un término variable que multiplica al volumen de gas transportado. Este peaje incluye inicialmente un derecho de almacenamiento en el punto virtual balance (PVB) que, mediante la disposición transitoria cuarta de la Orden IET/2736/2015, de 17 de diciembre, fue suprimido a partir del 1 de octubre de 2016.
1 de enero de 2007, mediante la Orden de peajes ITC/3996/2006, de 29 de diciembre, se aprobaron los siguientes peajes:

– Peaje de carga de cisternas, que inicialmente se aplicaba el peaje de regasificación. El nuevo peaje incluye un término de caudal que se calcula dividiendo el volumen de GNL descargado en el mes entre 30 días, y un término variable.

– Peaje transitorio para los antiguos usuarios de la tarifa de materia prima para la fabricación de fertilizante, y que agrupa los peajes de regasificación y transporte y distribución. Se ha ido incrementando progresivamente para que se aproxime a los peajes ordinarios y será suprimido el 1 de enero de 2018.

– Peaje interrumpible que capacita al Gestor Técnico del Sistema a ejecutar la interrupción en determinados casos, con dos modalidades. «A» y «B», la primera tasa la duración máxima de la interrupción que puede decretar el Gestor Técnico del Sistema en 5 días, mientras que en la modalidad «B» es de 10 días.

Posteriormente se han definido nuevos peajes en función de las necesidades del sistema gasista: en la Orden ITC/103/2005, de 28 de enero, se estableció un nuevo peaje para la descarga y la puesta en frío de buques, mientras que en el año 2006 la Orden ITC/4100/2005 definió estos nuevos peajes:

– Peaje interrumpible que capacita al Gestor Técnico del Sistema a ejecutar la interrupción en determinados casos, con dos modalidades. «A» y «B», la primera tasa la duración máxima de la interrupción que puede decretar el Gestor Técnico del Sistema en 5 días, mientras que en la modalidad «B» es de 10 días.

– Peajes aplicables a los contratos de duración inferior a un año, que consisten básicamente en los peajes ordinarios a los que se aplica un coeficiente al término de caudal en función de la duración de los mismos.

– Peaje de tránsito internacional, que multiplica el término fijo del término de conducción un factor de 0,7, no aplicando el término de conducción.

– Canon de almacenamiento subterráneo, que incluye un término fijo mensual aplicado al volumen contratado y un término variable que multiplica la cantidad de gas inyectado o extraído.

– Canon de almacenamiento GNL, aplicable diariamente al gas almacenado. Desde el 1 de enero de 2009 este canon se aplica a todo el GNL almacenado al haberse eliminado la capacidad de almacenamiento exenta incluida en el peaje de regasificación.

– Canon de almacenamiento subterráneo, que incluye un término fijo mensual aplicado al volumen contratado y un término variable que multiplica la cantidad de gas inyectado o extraído.

– Canon de almacenamiento GNL, aplicable diariamente al gas almacenado. Desde el 1 de enero de 2009 este canon se aplica a todo el GNL almacenado al haberse eliminado la capacidad de almacenamiento exenta incluida en el peaje de regasificación.

– Peaje de descarga de buques: incluye una cantidad fija y un término variable aplicable a la cantidad de energía descargada. Se aplican diferentes valores en función de la planta de regasificación al objeto de priorizar la utilización de las plantas con menor uso, con un término fijo de 33,978 €/buque en las plantas de Huelva, Cartagena y Sagunto y de 16.988 €/buque en las de Bilbao, Barcelona y Mugardos.

– Peaje 3.5: en el año 2007 se incorporó un nuevo escalón a los peajes del «Grupo 3», aplicable a clientes con consumos anuales superiores a 10 GWh, y donde, a diferencia del resto de los escalones del «Grupo 3», el término fijo es función del caudal contratado y existe la posibilidad de descuentos en el caso de consumos realizados durante el horario nocturno.
Anualmente se analiza la suficiencia de los peajes en vigor en función de las estimaciones anuales de retribuciones y las previsiones de mercado y cumpliendo las restricciones establecidas en el artículo 61 de la Ley 18/2014, de 15 de octubre:

- Mientras existan anualidades pendientes de amortizar de años anteriores los peajes y cánones no podrán ser revisados a la baja.

- En el caso de que la suma del desajuste anual y las anualidades reconocidas pendientes de amortizar supere el 15% de los ingresos liquidables del ejercicio se procederá a incrementar los peajes y cánones del año siguiente al objeto de que se recupere la cuantía que sobrepase dicho límite.

En el año 2017 la Orden ETU/1977/2016 mantuvo en vigor los peajes aprobados para el año 2016, aunque introdujo modificaciones en su forma de aplicación, necesarias para la aplicación efectiva de los nuevos productos de capacidad definidos en el artículo 6º del Real Decreto 984/2015, de 30 de octubre, por el que se regula el mercado organizado de gas y el acceso de terceros a las instalaciones del sistema de gas natural. En concreto se modificó la tabla de coeficientes aplicados a los contratos de duración inferior al año, aplicando una metodología propuesta por la CNMC, fundamentada en el borrador del Código de Red de Tarifas de la Comisión Europea, posteriormente aprobado mediante Reglamento (UE) 2017/460 de la Comisión, de 16 de marzo de 2017, que incluyó por primera vez coeficientes aplicables a los productos de capacidad diarios e intradiarios.

Esta orden modificó el artículo 4º de la Orden IET/2446/2013, de 27 de diciembre, bajo el principio de firmeza de la contratación del usuario durante toda la duración del producto contratado, con la única excepción de las contrataciones del grupo 3 de carácter indefinido donde se podrán realizar modificaciones en la capacidad contratada una vez transcurrido un año desde su contratación.

Asimismo, y como en cumplimiento de sentencia judicial firme, la Orden derogó el artículo 4º.7 de la Orden IET/2812/2012, de 27 de diciembre y el artículo 5º de la IET/2446/2013, de 27 de diciembre, que establecían limitaciones a la contratación de capacidad de carga de cisternas para plantas satélites que se encontraban en las proximidades de redes de distribución o transporte.

Al objeto de incrementar la información de los comercializadores se incluyó una modificación de la Orden IET/2446/2013, que obliga a los distribuidores a proporcionar a los comercializadores información intradiaria del consumo de los clientes que dispongan de telemetría.

7.3.3. Retribuciones de las actividades reguladas del sistema gasista.

Retribución a las actividades de transporte, regasificación y almacenamiento subterráneo

El Real Decreto-ley 8/2014, de 4 de julio, consolidado posteriormente mediante la Ley 18/2014, de 15 de octubre, ha incorporado sustanciales modificaciones en el régimen retributivo de las
actividades reguladas bajo el principio básico de sostenibilidad económica y financiera, es decir, los ingresos generados por el uso de las instalaciones han de ser suficientes para cubrir la totalidad de los costes del sistema, considerando los costes necesarios para realizar la actividad por una empresa eficiente y bien gestionada.

El nuevo sistema fija periodos regulatorios de seis años para establecer la retribución de las actividades reguladas, existiendo la posibilidad de ajustes cada tres años de los parámetros retributivos del sistema, entre otros, los valores unitarios de referencia por clientes y ventas, costes de operación y mantenimiento, factores de mejora de productividad, en caso de que se produzcan variaciones significativas de las partidas de ingresos y costes.

La competencia para la determinación de las retribuciones anuales de cada una de las empresas que realizan actividades reguladas recae en el Ministerio de Energía, Turismo y Agenda Digital, previo acuerdo de la Comisión Delegada del Gobierno para Asuntos Económicos e informe preceptivo de la Comisión Nacional de los Mercados y la Competencia.

La ley unificó las metodologías de cálculo de las retribuciones de las actividades de transporte primario, regasificación y almacenamiento subterráneo, que en los tres casos pasa a incluir dos componentes: retribución a la disponibilidad (RD) y retribución por continuidad de suministro (RCS).

El término RD se compone de dos términos: retribución a la inversión, que incluye amortización y retribución financiera de los activos y retribución por operación y mantenimiento.

La retribución financiera se calcula aplicando la tasa de rentabilidad del período regulatorio al valor neto del activo. La tasa de rentabilidad se calcula como el promedio del rendimiento de las obligaciones del Estado a diez años en el mercado secundario durante los veinticuatro meses anteriores a la entrada en vigor del Real Decreto-ley 8/2014. La fórmula da como resultado una tasa del 5,09%, que permanecerá constante durante todo periodo regulatorio.

La amortización se calcula dividiendo el valor reconocido de inversión entre la vida regulatoria establecida, que, en el caso de los gasoductos, es de 40 años.

La retribución por operación y mantenimiento se calcula multiplicant los parámetros técnicos de la instalación por los valores unitarios en vigor. Para las instalaciones que han superado la vida útil regulatoria pero que continúan en servicio, los ingresos por operación y mantenimiento se ven afectados por un coeficiente de extensión de vida útil. Este coeficiente es de 1,15 durante los prime ros cinco años, y posteriormente se incrementa de forma progresiva hasta alcanzar 1,20 a los 10 años, 1,30 a los 15 años y 1,40 a los 20 años.

La retribución por continuidad de suministro RCS se calcula aplicando una fórmula de reparto a una cantidad predefinida:

ECUACIÓN 7.1.

\[RCS^n = \alpha^n * (RCS_{n-1} * f^n) * (1 + \Delta D^n) \]

Donde:

- \(\alpha^n \) es el coeficiente de reparto ara el año «n» entre todos los elementos de inmovilizado «i».
El coeficiente de reparto α^A_n se calcula mediante la fórmula:

$$\alpha^A_n = \frac{\sum_{i=1}^{\infty} VR_i}{\sum_{i=1}^{\infty} VR_i}$$

Donde el término es el valor de reposición del elemento «i» en el año anterior. El denominador contiene la suma de los valores de reposición de todos los activos adscritos a la actividad. El valor de reposición se obtiene aplicando a los parámetros técnicos de la instalación los valores unitarios de inversión en vigor.

Las retribuciones del año 2016 fueron publicadas en el anexo I de la Orden IET/2736/2015, de 17 de diciembre, incluyendo revisiones de la retribución en

TABLA 7.13. RETRIBUCIÓN DE LA ACTIVIDAD DE TRANSPORTE EN 2016 (€)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Natural CEGAS, S. A.</td>
<td>1.271.847,32</td>
<td>2.390.945,74</td>
<td>3.662.793,06</td>
<td>23.753,04</td>
<td>-11.021,78</td>
<td>3.575.532,32</td>
</tr>
<tr>
<td>Enagas Transporte, S. A.</td>
<td>319.232.005,81</td>
<td>256.840.000,84</td>
<td>685.972.005,65</td>
<td>22.420.720,78</td>
<td>4.189.813,52</td>
<td>713.563.318,95</td>
</tr>
<tr>
<td>Gas Natural Andalucía, S. A.</td>
<td>158.954,76</td>
<td>3.715.444,70</td>
<td>3.874.404,70</td>
<td>125.348,97</td>
<td>11.907,02</td>
<td>3.989.270,46</td>
</tr>
<tr>
<td>Redexis Gas Aragón, S. A.</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Gas Natural Castilla-La Mancha, S. A.</td>
<td>2.630.432,20</td>
<td>2.645.573,87</td>
<td>4.276.006,06</td>
<td>136.168,23</td>
<td>12.100,14</td>
<td>4.474.274,73</td>
</tr>
<tr>
<td>Planta de Regasificación de Sagunto, S. A.</td>
<td>321.316,41</td>
<td>521.316,41</td>
<td>16.089,92</td>
<td>1.322,92</td>
<td>538.739,25</td>
<td></td>
</tr>
<tr>
<td>Transportista Regional del Gas, S. A.</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Redexis Gas Transporte, S. L.</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Gas Energía Distribución Murcia, S. A.</td>
<td>0,00</td>
<td>1.699.105,87</td>
<td>1.699.105,87</td>
<td>61.318,40</td>
<td>4.751,39</td>
<td>1.960.120,65</td>
</tr>
</tbody>
</table>
concepto de RCS de los años 2014 y 2015 como consecuencia de alteraciones en las cifras de demanda.

La retribución al transporte en el año 2016 asciende a 862.425.729,09 €, lo que incluye 595.717.146,34 € en concepto de \(RD_n \), 25.608.952,90 € como corrección del \(RD_n \) de los años 2014 y 2015 debido a la revisión de la retribución financiera, 230.875.850,98 € en concepto de \(RCS_n \) y 6.766.104,64 por la revisión del \(RCS_n \) del año 2015, al actualizar las cifras de demanda.

La retribución a la actividad de regasificación en el 2016 ascendió a 460.445.036,59 €, que incluye 369.398.289,25 € en concepto de \(RD_n \) y 91.046.747,34 € como \(RCS_n \). Estas cifras incluyen 11.244.834,53 € por la revisión del \(RD \) de los años 2014 y 2015 al aplicarse la nueva tasa de rentabilidad financiera de 5,09% y 8.524.476,21 € consecuencia de la revisión del \(RCS_n \) de los años 2014 y 2015 al actualizarse las cifras de demanda.

La retribución a los almacenamientos subterráneos básicos en 2016 alcanzó 170.063.192,88 €, lo que incluye 33.397.073,22 € en concepto de \(RD_n \) por inversión, 30.296.691,97 € por \(RD_n \) por costes de operación y mantenimiento, 15.718.229 € como costes de operación y mantenimiento del almacenamiento «Castor», 80.664.720 € en concepto de derechos de cobro del Real Decreto-ley 13/2012, de 30 de marzo y 6.060.518,15 € en concepto de \(RCS_n \).

Retribución a la actividad de distribución

La Ley 18/2014 introdujo también importantes modificaciones en el régimen retributivo de la actividad de distribución de gas natural, siendo una de las más relevantes el cambio de tratamiento de las instalaciones de transporte secundario que a la fecha de entrada en vigor del real decreto-ley no dispusieran de aprobación de la nueva tasa de rentabilidad.

TABLA 7.14. RETRIBUCIÓN DE LA ACTIVIDAD DE REGASIFICACIÓN EN 2016 (€)

<table>
<thead>
<tr>
<th>[Euros]</th>
<th>Total 2016</th>
<th>Total 2015</th>
<th>Total 2014</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahía de Bizkaia Gas, S.L.</td>
<td>48.600.020,95</td>
<td>1.762.776,35</td>
<td>121.984,49</td>
<td>50.484.781,79</td>
</tr>
<tr>
<td>Planta de Regasificación de Sagunto, S.A.</td>
<td>86.457.383,02</td>
<td>3.251.912,30</td>
<td>433.523,58</td>
<td>90.122.818,89</td>
</tr>
<tr>
<td>Regasificadora del Noroeste, S.A.</td>
<td>44.165.151,00</td>
<td>1.992.875,51</td>
<td>227.463,74</td>
<td>46.385.490,25</td>
</tr>
</tbody>
</table>

TABLA 7.15. RETRIBUCIÓN DE LA ACTIVIDAD DE ALMACENAMIENTO SUBTERRÁNEO EN 2016 (€)

<table>
<thead>
<tr>
<th>[Euros]</th>
<th>Total 2016</th>
<th>Total 2015</th>
<th>Total 2014</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enagas Transporte, S.A.U.</td>
<td>77.705.370,02</td>
<td>-895.015,01</td>
<td>-389.031,77</td>
<td>76.421.323,24</td>
</tr>
<tr>
<td>ESCAL UGS, S.L.</td>
<td>0,00</td>
<td>0,00</td>
<td>4.561.868,37</td>
<td>4.561.868,37</td>
</tr>
<tr>
<td>Titulares Derecho cobro RD-Ley 13/2014</td>
<td>80.664.720,00</td>
<td>0,00</td>
<td>0,00</td>
<td>80.664.720,00</td>
</tr>
<tr>
<td>Gas Natural Almacenamiento Andalucía, S.A.</td>
<td>7.061.813,32</td>
<td>862.601,66</td>
<td>490.866,29</td>
<td>8.415.281,27</td>
</tr>
<tr>
<td>TOTAL AASS</td>
<td>165.431.903,34</td>
<td>-32.433,35</td>
<td>4.663.702,89</td>
<td>170.063.192,88</td>
</tr>
</tbody>
</table>
cución, que pasan a tener la consideración de instalaciones de distribución a efectos del régimen retributivo.

La nueva fórmula de cálculo de la retribución, incluida en el anexo X de la ley, incorpora modificaciones sustanciales, aunque se mantiene la filosofía de retribución en función de los clientes captados y ventas realizadas y, al igual que en la retribución a las instalaciones de transporte, se ha suprimido la actualización anual en función de la semisuma del IPC e IPRI.

La retribución anual es la suma de la retribución del año anterior más la derivada de la variación neta de la cifra de clientes y ventas:

ECUACIÓN 7.3.

\[RD_n = RD_{n-1} + RN_n \]

Donde:

- \(RD_{n-1} \): retribución del año «n-1».
- \(RN_n \): Retribución anual correspondiente a la captación de nuevo mercado.

La retribución a la captación de nuevo mercado se calcula aplicando las retribuciones unitarias a las previsiones de mercado realizadas, previsiones que son posteriormente ajustadas una vez se conocen las cifras reales de clientes y ventas.

Las retribuciones unitarias propuestas en la ley, y que se van a mantener constantes durante el período regulatorio de seis años son:

- Retribución unitaria por cliente en municipios ya gasificados: 50 €/cliente.
- Retribución unitaria por cliente en municipios de regasificación reciente: 70 €/cliente.
- Retribución unitaria para suministros a presión igual o inferior a 4 bar realizados a consumidores con consumo anual inferior o igual a 50 MWh: 7,5 €/MWh.
- Retribución unitaria para suministros a presión igual o inferior a 4 bar realizados a consumidores con consumo anual superior a 50 MWh: 4,5 €/MWh.
- Retribución unitaria para suministros entre 4 y 60 bar: 1,25 €/MWh.

Las retribuciones unitarias anteriores premian con 20 €/cliente anual el mayor esfuerzo que supone el inicio de la distribución de gas en nuevos municipios, definiéndose a estos efectos el término municipal de gasificación reciente como aquel en el que la primera puesta en servicio de gas se haya producido en los cinco años anteriores al año de cálculo de la retribución.

La ley incluyó una nueva retribución para el año 2014 que minoraban en 110.687.809 € las cifras en vigor desde el 1 de enero de 2014.

Las retribuciones del año 2016 publicadas en la Orden IET/2736/2015, de 17 de diciembre, son las siguientes:
7.3.4. **Gases licuados del petróleo**

Gases licuados del petróleo envasados

La disposición adicional trigésima tercera de la Ley 34/1998, de 7 de octubre, en la redacción dada por el Real Decreto-ley 8/2014, de 4 de julio, de aprobación de medidas urgentes para el crecimiento, la competitividad y la eficacia, faculta al Ministro de Industria, Energía y Turismo (actualmente Ministerio de Energía, Turismo y Agenda Digital) a determinar, previo acuerdo de la Comisión Delegada del Gobierno para Asuntos Económicos, los precios máximos de venta al público de los gases licuados del petróleo envasado, en envases con carga igual o superior a 8 kilogramos e inferior a 20 kilogramos, cuya tara sea superior a 9 kilogramos, en tanto las condiciones de concurrencia y competencia en este mercado no se consideren suficientes. En particular, le habilita a establecer valores concretos de dichos precios o un sistema de determinación y actualización automática de los mismos. El precio máximo deberá incorporar el coste del suministro a domicilio.

<table>
<thead>
<tr>
<th>TABLA 7.16.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retribución 2016</td>
</tr>
<tr>
<td>Natúrgas Energía Distribución, S.A.</td>
</tr>
<tr>
<td>Gas Directa, S.A.</td>
</tr>
<tr>
<td>Redexis Gas Distribución, S.A.</td>
</tr>
<tr>
<td>Distribución y Comercialización de Gas Extremadura, S.A.</td>
</tr>
<tr>
<td>Tolosa Gas, S.A</td>
</tr>
<tr>
<td>Gas Natural Distribución SDG, S.A.</td>
</tr>
<tr>
<td>Gas Natural Andalucía, S.A.</td>
</tr>
<tr>
<td>Gas Natural Castilla–La Mancha, S.A.</td>
</tr>
<tr>
<td>Gas Natural Castilla y León, S.A.</td>
</tr>
<tr>
<td>CEAGAS, S.A.</td>
</tr>
<tr>
<td>Gas Galicia SDG, S.A.</td>
</tr>
<tr>
<td>Gas Energía Distribución Murcia, S.A.</td>
</tr>
<tr>
<td>Gas Navarra, S.A.</td>
</tr>
<tr>
<td>Gas Natural Rioja, S.A.</td>
</tr>
<tr>
<td>Gasificadora Regional Canaria, S.A.</td>
</tr>
<tr>
<td>Madrileña Red de Gas</td>
</tr>
<tr>
<td>Gas Natural Madrid</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>
Posteriormente, la Orden IET/389/2015, de 5 de marzo, por la que se actualiza el sistema de determinación automática de precios máximos de venta, antes de impuestos, de los gases licuados del petróleo envasados y se modifica el sistema de determinación automática de las tarifas de venta, antes de impuestos, de los gases licuados del petróleo por canalización, introduce algunas novedades: por un lado, adapta el coste de la materia prima, de la fórmula para la determinación de los precios máximos de venta, a la realidad de los suministros del mercado nacional en los últimos años y por otro, actualiza la fórmula de determinación de los costes de comercialización del citado sistema, sustituyéndose en la actual fórmula las referencias a las variaciones de índices generales por el valor cero.

Los citados precios siguen revisándose con periodicidad bimestral, si bien la orden recoge que producirán efectos a partir del tercer martes del mes en el que proceda efectuar la revisión, en lugar del segundo martes anteriormente vigente.

Finalmente, la Ley 8/2015, de 21 de mayo, por la que se modifica la Ley 34/1998, de 7 de octubre, por la que se regulan determinadas medidas tributarias y no tributarias en relación con la explotación, investigación y explotación de hidrocarburos, regula algunos aspectos relacionados con el suministro, recoge una nueva infracción muy grave relativa a la obligación de suministro domiciliario de GLP envasado y modifica la infracción relativa a la negativa a suministrar gases por canalización a consumidores en régimen de tarifa y precios regulados, para hacerla extensiva al GLP envasado.

Los costes de comercialización se actualizaron nuevamente en los meses de julio de 2015 (1,92%) y de 2016 (-1,04%).

Gases licuados del petróleo por canalización

El artículo 94 de la Ley 34/1998, de 7 de octubre, dispone que el Ministro de Industria, Turismo y Comercio (actualmente Ministro de Energía, Turismo y Agenda Digital), previo acuerdo de la Comisión Delegada del Gobierno para Asuntos Económicos, podrá dictar las disposiciones necesarias para el establecimiento de las tarifas de venta de los gases licuados del petróleo por canalización para los consumidores finales, así como los precios de cesión de gases licuados del petróleo para los distribuidores de gases combustibles por canalización, estableciendo los valores concretos de dichas tarifas y precios o un sistema de determinación y actualización automática de las mismas.

El sistema de determinación de los precios máximos de venta del GLP por canalización vigente es el establecido en la Orden de 16 de julio de 1998, por la que se actualizan los costes de comercialización del sistema de determinación automática de precios máximos de venta, antes de impuestos, de los gases licuados del petróleo, y se liberalizan determinados suministros.

El precio máximo del GLP suministrado por canalización se calcula mensualmente mediante una fórmula pública que tiene en cuenta el coste internacional del propano y butano calculado mediante la media de las cotizaciones de dichos
productos y el flete, a los que se adiciona un coste de comercialización.

La Orden IET/389/2015, de 5 de marzo, por la que se actualiza el sistema de determinación automática de precios máximos de venta, antes de impuestos, de los gases licuados del petróleo envasados y se modifica el sistema de determinación automática de las tarifas de venta, antes de impuestos, de los gases licuados del petróleo por canalización, introduce algunas novedades, en la misma línea que en el suministro de envasado. Adapta el término correspondiente al coste de la materia prima de la fórmula para la determinación de los precios máximos de venta a la realidad de los suministros del mercado nacional en los últimos años y actualiza la fórmula de determinación de los costes de comercialización, sustituyéndose en la actual fórmula las referencias a las variaciones de índices generales por el valor cero.

Por otro lado, y teniendo en cuenta la disposición transitoria vigésima de la Ley 34/1998, de 7 de octubre, que establece un régimen transitorio para los gases manufacturados suministrados en territorios insulares, durante el cual los distribuidores son responsables del suministro a los consumidores finales a un precio regulado y el citado artículo 94 de dicha ley que habilita al Ministro de Industria, Energía y Turismo, previo Acuerdo de la Comisión Delegada del Gobierno para Asuntos Económicos, a regular los precios de cesión de los gases licuados del petróleo destinados a los distribuidores de gases combustibles por canalización, la orden establece que:

«En los territorios insulares en los que la disposición transitoria vigésima de la Ley 34/1998, de 7 de octubre, del sector de hidrocarburos, sea de aplicación, el precio de venta de los suministros de gases licuados del petróleo a granel a empresas distribuidoras de gases licuados del petróleo por canalización se aplicará también a los suministros con destino a empresas distribuidoras de gases manufacturados y/o aire propanado por canalización.»

Finalmente, la Ley 8/2015, de 21 de mayo, por la que se modifica la Ley 34/1998, de 7 de octubre, del Sector de Hidrocarburos, y por la que se regulan determinadas medidas tributarias y no tributarias en relación con la exploración, investigación y explotación de hidrocarburos, regula algunos aspectos relativos al suministro de GLP a granel, entre otros:

– Define de forma explícita el suministro de GLP por canalización.

– Actualiza la obligación de suministro del comercializador al por menor de GLP a granel estableciendo que los comercializadores al por menor de GLP a granel tienen la obligación de suministrar GLP a todos los consumidores que, dentro de la provincia en la que esté actuando el comercializador, lo soliciten.

– Modifica la infracción relativa a la negativa a suministrar gases por canalización a consumidores en régimen de tarifa y precios regulados, para hacerla extensiva al GLP envasado y al GLP canalizado.

Los costes de comercialización se actualizaron nuevamente en los meses de julio de 2015 (-0,38%) y de 2016 (-0,57%).
7.4. PRECIOS Y COTIZACIONES DE CRUDOS Y PRODUCTOS PETROLÍFEROS

7.4.1. Cotizaciones de crudos y derivados

Tras la fuerte caída de los precios del petróleo en 2014, el precio del barril de Brent vivió una ligera recuperación en los primeros meses de 2015 pasando de menos de 50 dólares por barril en enero a unos 65 dólares por barril en mayo. A partir de ahí el precio del barril adoptó una tendencia claramente descendente cerrando el año en el entorno de los 35 dólares por barril.

La evolución de las cotizaciones internacionales de la gasolina y el gasóleo de automoción durante 2016 ha sido similar a la del crudo. Tras una importante caída en la segunda mitad de 2015, desde abril de 2016 las cotizaciones se han ido recuperando tómidamente, alcanzando valores similares a los de septiembre y noviembre de 2015.

La cotización anual media del dólar en relación con el euro pasó de 90,2 en 2015 a 90,4 en 2016. La cotización se incrementó especialmente en los meses de invierno.

<table>
<thead>
<tr>
<th>Año</th>
<th>Media anual</th>
<th>Media diciembre</th>
<th>Ult. día cotización</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>52,46</td>
<td>38,21</td>
<td>47,31</td>
</tr>
<tr>
<td>2015</td>
<td>52,46</td>
<td>38,21</td>
<td>47,31</td>
</tr>
<tr>
<td>Dif. absoluta</td>
<td>−8,81</td>
<td>15,39</td>
<td>−7,41</td>
</tr>
<tr>
<td>Dif. %</td>
<td>−16,8%</td>
<td>40,3%</td>
<td>−15,7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Año</th>
<th>Media anual</th>
<th>Media diciembre</th>
<th>Ult. día cotización</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>464,1</td>
<td>528,9</td>
<td>547,1</td>
</tr>
<tr>
<td>2015</td>
<td>561,7</td>
<td>434,9</td>
<td>424,9</td>
</tr>
<tr>
<td>Dif. Absoluta</td>
<td>−97,6</td>
<td>94,0</td>
<td>122,2</td>
</tr>
<tr>
<td>Dif. %</td>
<td>−17,4%</td>
<td>21,6%</td>
<td>28,8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Año</th>
<th>Media anual</th>
<th>Media diciembre</th>
<th>Ult. día cotización</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>393,8</td>
<td>475,15</td>
<td>490,8</td>
</tr>
<tr>
<td>2015</td>
<td>494,1</td>
<td>339,21</td>
<td>343,4</td>
</tr>
<tr>
<td>Dif. Absoluta</td>
<td>−100,3</td>
<td>135,9</td>
<td>377,4</td>
</tr>
<tr>
<td>Dif. %</td>
<td>−20,3%</td>
<td>40,1%</td>
<td>56,6%</td>
</tr>
</tbody>
</table>
últimos meses de 2016, pasando de 89 céntimos de euro por dólar en septiembre a 95 céntimos en diciembre.

7.4.2. Precios de los hidrocarburos líquidos en España y resto de la UE

En relación con los precios de venta al público en España, el precio medio de la gasolina I.O. 95 disminuyó 8 céntimos de euro por litro en 2016 respecto a 2015, pasando de 122,8 cent/l a 115,2 cent/l, mientras que el precio medio del gasóleo de automoción en estaciones de servicio se abarató 10 cent/l, al pasar de 111,4 cent/l en 2015 a 101,5 cent/l en 2016.

En la evolución de los precios semana a semana, puede verse en los gráficos de líneas adjuntos que el precio de la gasolina en España es el más bajo de los representados, con la excepción de Austria.

Respecto al gasóleo de automoción, de los países que aparecen en la gráfica España tiene el menor precio, muy a la par con Austria.

El gasóleo de calefacción evoluciona en España de forma sustancialmente paralela a la de la UE, si bien España se encuentra entre los países más baratos de los mostrados.

En cuanto al fuelóleo, los precios de España se encuentran entre los más bajos de los mostrados. Tan sólo Bélgica posee precios sistemáticamente más bajos.

En el gráfico de evolución del coste CIF del crudo en España se repite la misma pauta ya descrita para la cotización del barril Brent.

FIGURA 7.5. PVP GASOLINA SIN PLOMO I.O. 95 EN ALGUNOS PAÍSES DE LA UE
FIGURA 7.8. PRECIO FUELÓLEO B.I.A. EN ALGUNOS PAÍSES DE LA UE
(LOS PRECIOS REPRESENTADOS INCLUYEN EL IMPUESTO ESPECIAL, PERO NO EL IVA)

FIGURA 7.9. EVOLUCIÓN DEL COSTE CIF DEL CRUDO EN ESPAÑA
FIGURA 7.10.

FIGURA 7.11.
Por último, en cuanto a la posición de los precios medios anuales de España en relación con el resto de la UE, se puede apreciar en los gráficos de barras adjuntos que, de los países que aparecen en ellos, los precios en España se encuentran en la parte alta. Y en el caso del gasóleo se sitúan en la parte media alta.

7.4.3. Precios de los hidrocarburos gaseosos

Gas natural

Evolución de la tarifa de gas natural de último recurso

La tarifa de último recurso (TUR) está en vigor desde el 1 de enero 2008, aunque hasta el 1 de julio de dicho año se aplicó un régimen provisional durante el cual las empresas distribuidoras continuaron haciendo cargo del suministro.

El 1 de enero de 2015 la revisión de la tarifa TUR,1, aplicada a consumos anuales inferiores a 5.000 kWh, que supuso una rebaja del 2,6% para el consumidor medio, mientras que en el caso de la TUR.2, aplicada a consumos anuales entre 5.000 y 50.000 kWh, la disminución alcanzó el 3,24%. Este abaratamiento de la tarifa fue consecuencia directa de una disminución del 8,9% del coste de la materia prima. En las posteriores revisiones de la TUR durante 2015 continuó la tendencia a la baja, consecuencia de la reducción del coste de adquisición del gas debida a la caída de las cotizaciones del crudo Brent.

En enero de 2016 la modificación de la fórmula del cálculo de la materia prima fue acompañada de nuevas revisiones a la baja: del 2,74% la TUR.1 y del 3,66% la TUR.2, tendencia que continuó en la revisión del 1 de abril de 2016 con bajadas del 2,56% la TUR 1 y del 3,30% la TUR 2. Posteriormente, en julio de 2016 no hubo lugar a revisión de la TUR porque la variación del precio de la materia prima fue inferior al 2%, mientras que en la

<table>
<thead>
<tr>
<th>Fecha</th>
<th>T. Fijo (€/mes)</th>
<th>% Variación</th>
<th>cts/kWh</th>
<th>% Variación</th>
<th>T. Fijo (€/mes)</th>
<th>% Variación</th>
<th>cts/kWh</th>
<th>% Variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-ene-15</td>
<td>4,36</td>
<td>-0,46%</td>
<td>5,53309</td>
<td>-3,48%</td>
<td>8,84</td>
<td>-0,45%</td>
<td>4,845909</td>
<td>-3,97%</td>
</tr>
<tr>
<td>01-abr-15</td>
<td>4,36</td>
<td>0,00%</td>
<td>5,37623</td>
<td>-2,95%</td>
<td>8,84</td>
<td>0,00%</td>
<td>4,687223</td>
<td>-3,39%</td>
</tr>
<tr>
<td>01-jul-15</td>
<td>4,36</td>
<td>0,00%</td>
<td>5,19298</td>
<td>-3,50%</td>
<td>8,84</td>
<td>0,00%</td>
<td>4,505598</td>
<td>-4,03%</td>
</tr>
<tr>
<td>01-oct-15</td>
<td>4,36</td>
<td>0,00%</td>
<td>5,25575</td>
<td>-1,32%</td>
<td>8,84</td>
<td>0,00%</td>
<td>4,438175</td>
<td>-1,52%</td>
</tr>
<tr>
<td>01-ene-16</td>
<td>4,34</td>
<td>-0,46%</td>
<td>4,93929</td>
<td>-3,77%</td>
<td>8,67</td>
<td>-1,96%</td>
<td>4,251889</td>
<td>-4,38%</td>
</tr>
<tr>
<td>01-abr-16</td>
<td>4,34</td>
<td>0,00%</td>
<td>4,75244</td>
<td>-3,71%</td>
<td>8,67</td>
<td>0,00%</td>
<td>4,075049</td>
<td>-4,34%</td>
</tr>
<tr>
<td>01-oct-16</td>
<td>4,34</td>
<td>0,00%</td>
<td>4,82448</td>
<td>1,30%</td>
<td>8,67</td>
<td>0,00%</td>
<td>4,137088</td>
<td>1,52%</td>
</tr>
<tr>
<td>01-ene-17</td>
<td>4,31</td>
<td>-0,69%</td>
<td>5,04545</td>
<td>4,60%</td>
<td>8,45</td>
<td>-2,54%</td>
<td>4,359143</td>
<td>5,37%</td>
</tr>
<tr>
<td>01-abr-17</td>
<td>4,31</td>
<td>0,00%</td>
<td>5,16023</td>
<td>2,25%</td>
<td>8,45</td>
<td>0,00%</td>
<td>4,47283</td>
<td>2,62%</td>
</tr>
</tbody>
</table>

Desde el 1 de julio de 2008 los precios mostrados corresponden a la tarifa de último recurso (TUR 1 y TUR 2 respectivamente).

FUENTE: Subdirección General de Hidrocarburos.
En octubre de 2016, la TUR.1 se encareció un 0,92% y la TUR.2 un 1,20%.

En 2017, las tarifas para un consumidor medio se han visto incrementadas tanto en la revisión de enero (3,09% y 3,82% para TUR.1 y TUR.2 respectivamente) como en la de abril (1,62% y 2,09% para TUR.1 y TUR.2 respectivamente) debido al incremento de los precios de la materia prima.

Gases licuados del petróleo envasados

En marzo de 2015, la Orden IET/389/2015 sustituyó a la Orden IET/337/2014, continuando con el sistema de revisión de precios regulados del GLP envasado (envases entre 8 y 20 kg) de forma bimestral, pero modificando el día concreto, que pasa a ser el tercer martes de cada mes.

TABLA 7.21. PRECIO MEDIO EN CTS/KWH PARA DIFERENTES CONSUMIDORES (P≤4B)

<table>
<thead>
<tr>
<th>Bandas de consumo anual</th>
<th>D1 < 20 GJ/año (5.556 kWh/año)</th>
<th>D2 20 - 200 GJ/año (5.556 - 55.556 kWh/año)</th>
<th>D3 > 200 GJ/año (55.556 kWh/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AÑO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>5,9947</td>
<td>5,0116</td>
<td>4,0986</td>
</tr>
<tr>
<td>2008</td>
<td>6,4118</td>
<td>5,2943</td>
<td>4,5068</td>
</tr>
<tr>
<td>2009</td>
<td>6,5305</td>
<td>4,9435</td>
<td>4,0776</td>
</tr>
<tr>
<td>2010</td>
<td>5,8444</td>
<td>4,5895</td>
<td>4,0809</td>
</tr>
<tr>
<td>2011</td>
<td>5,8118</td>
<td>4,5600</td>
<td>4,0809</td>
</tr>
<tr>
<td>2012</td>
<td>7,3600</td>
<td>5,6000</td>
<td>4,9443</td>
</tr>
<tr>
<td>2013</td>
<td>7,2036</td>
<td>5,8136</td>
<td>5,4576</td>
</tr>
<tr>
<td>2014</td>
<td>7,6536</td>
<td>5,9832</td>
<td>5,3948</td>
</tr>
<tr>
<td>2015</td>
<td>7,3908</td>
<td>5,8104</td>
<td>5,0796</td>
</tr>
<tr>
<td>2016</td>
<td>6,8796</td>
<td>5,3640</td>
<td>4,4064</td>
</tr>
</tbody>
</table>

TABLA 7.22. PRECIO MEDIO EN CTS/KWH (IMPUESTOS NO INCLUIDOS) PARA DIFERENTES CONSUMIDORES INDUSTRIALES A PRESIÓN SUPERIOR A 4 BAR

<table>
<thead>
<tr>
<th>Nueva metodología. Bandas de consumo anual</th>
<th>I1 < 1.000 GJ/año (278 MWh/año)</th>
<th>I2 1.000-10.000 GJ/año (278-2.778 MWh/año)</th>
<th>I3 10.000-100.000 GJ/año (2,8-27,8 GWh/año)</th>
<th>I4 100.000-1.000.000 GJ/año (27,8-277,8 GWh/año)</th>
<th>I5 1.000.000-4.000.000 GJ/año (277,8-1.111,1 GWh/año)</th>
<th>I6 > 4.000.000 GJ/año (> 1.111,1 GWh/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AÑO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>3,1838</td>
<td>2,6312</td>
<td>2,5466</td>
<td>2,4109</td>
<td>1,9926</td>
<td>1,9717</td>
</tr>
<tr>
<td>2008</td>
<td>3,5570</td>
<td>3,1896</td>
<td>3,0015</td>
<td>2,8039</td>
<td>2,5605</td>
<td>2,4833</td>
</tr>
<tr>
<td>2009</td>
<td>4,4416</td>
<td>3,3764</td>
<td>2,9215</td>
<td>2,5175</td>
<td>2,3072</td>
<td>2,1021</td>
</tr>
<tr>
<td>2010</td>
<td>4,9321</td>
<td>3,4142</td>
<td>2,8416</td>
<td>2,4832</td>
<td>2,3243</td>
<td>2,0178</td>
</tr>
<tr>
<td>2011</td>
<td>3,7688</td>
<td>3,8725</td>
<td>3,1153</td>
<td>2,8383</td>
<td>2,6485</td>
<td>2,4594</td>
</tr>
<tr>
<td>2012</td>
<td>4,6845</td>
<td>4,6252</td>
<td>4,6252</td>
<td>3,3229</td>
<td>3,1429</td>
<td>3,6200</td>
</tr>
<tr>
<td>2013</td>
<td>4,8204</td>
<td>4,7412</td>
<td>3,8140</td>
<td>3,4308</td>
<td>3,2400</td>
<td>3,2220</td>
</tr>
<tr>
<td>2014</td>
<td>4,8996</td>
<td>4,5072</td>
<td>3,6828</td>
<td>3,3084</td>
<td>3,1644</td>
<td>3,1212</td>
</tr>
<tr>
<td>2015</td>
<td>4,8132</td>
<td>4,4128</td>
<td>3,6504</td>
<td>3,1896</td>
<td>2,9952</td>
<td>2,8764</td>
</tr>
<tr>
<td>2016</td>
<td>4,2696</td>
<td>3,5748</td>
<td>2,7576</td>
<td>2,3904</td>
<td>2,0412</td>
<td>1,9548</td>
</tr>
</tbody>
</table>

NOTA 1. El valor del año 2007 corresponde al valor del segundo semestre. En todos los demás años se da como valor anual el del primer semestre.

NOTA 2. El valor de I6 para 2012, anómalamente más alto que el I5 y el I4, ha sido confirmado por la empresa remitente de los datos.

FUENTE: Subdirección General de Hidrocarburos.
FIGURA 7.12. EVOLUCIÓN DE LA TARIFA DE ÚLTIMO RECURSO DE GAS NATURAL

FUENTE: Subdirección General de Hidrocarburos.

FIGURA 7.13. PRECIOS SIN IMPUESTOS DEL GAS NATURAL PARA USOS INDUSTRIALES PRIMER SEMESTRE 2016

FUENTE: Subdirección General de Hidrocarburos.
Desde dicha fecha hasta octubre de 2016 el precio de la botella bajó en todas las revisiones, excepto una pequeña subida en enero de 2016, situándose en 11,30 euros por botella de 12,5 kg en julio de 2016. A partir de octubre de dicho año el precio máximo por botella ha aumentado en todas las revisiones, debido principalmente al aumento de la materia prima, situándose en mayo de 2017 en los 14,18 euros por botella de 12,5 kg.

El gráfico siguiente muestra la evolución del precio de venta de la bombona de 12,5 Kg en Península y Baleares.

Como resumen de la evolución de los precios medios anuales entre diferentes años se muestra la siguiente tabla:

Gases licuados del petróleo por canalización

Durante los primeros meses de 2008 el precio bajó hasta abril, para incrementarse después hasta julio, y posteriormente descender continuamente hasta diciembre. Finalizó el año con precio mínimo anual. En 2009, exceptuando febrero, bajo durante el primer semestre, y subió durante el segundo. En 2010 y durante los 3 primeros meses el término variable (sin impuestos) se mantuvo aproximadamente entre 85 y 90 cé /Kg. En el último trimestre creció considerablemente hasta los 106,42 de diciembre. En 2011 tuvimos dientes de sierra decrecientes hasta octubre de 2011 para subir ligeramente en los últimos meses del año. En 2012 hubo subidas en
la primera parte del año, seguidas de bajadas, y nuevamente con subidas, mientras que en 2013 el precio descendió fuertemente en la primera parte del año y se incrementó en la segunda. Ya a principios de 2014 la tendencia del precio es de nuevo decreciente. Una tendencia que se mantiene todo el año 2014 hasta que ya a principio de 2015 se sitúa el precio en valores mucho más reducidos. Durante el resto de 2015 y principios de 2016 continúa la tendencia descendente, aunque menos pronunciada, hasta mediados de año. Desde octubre de 2016 a febrero de 2017 el precio experimentó una subida hasta los 80 cts/kg, que se ha revertido parcialmente los últimos meses. La evolución se puede apreciar en el gráfico siguiente.

Como resumen de la evolución de los precios medios anuales de venta al público entre diferentes años se muestra la siguiente tabla:

<table>
<thead>
<tr>
<th>AÑO</th>
<th>€/BOTELLA</th>
<th>ÍNDICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>5,79</td>
<td>100,00</td>
</tr>
<tr>
<td>1995</td>
<td>6,24</td>
<td>107,87</td>
</tr>
<tr>
<td>1996</td>
<td>6,36</td>
<td>109,87</td>
</tr>
<tr>
<td>1997</td>
<td>6,67</td>
<td>115,27</td>
</tr>
<tr>
<td>1998</td>
<td>6,25</td>
<td>107,95</td>
</tr>
<tr>
<td>1999</td>
<td>6,51</td>
<td>112,55</td>
</tr>
<tr>
<td>2000</td>
<td>6,97</td>
<td>120,46</td>
</tr>
<tr>
<td>2001</td>
<td>8,44</td>
<td>145,86</td>
</tr>
<tr>
<td>2002</td>
<td>8,48</td>
<td>118,12</td>
</tr>
<tr>
<td>2003</td>
<td>8,55</td>
<td>147,72</td>
</tr>
<tr>
<td>2004</td>
<td>8,51</td>
<td>147,07</td>
</tr>
<tr>
<td>2005</td>
<td>8,42</td>
<td>162,83</td>
</tr>
<tr>
<td>2006</td>
<td>11,87</td>
<td>205,16</td>
</tr>
<tr>
<td>2007</td>
<td>11,81</td>
<td>204,06</td>
</tr>
<tr>
<td>2008</td>
<td>13,64</td>
<td>235,66</td>
</tr>
<tr>
<td>2009</td>
<td>12,28</td>
<td>194,89</td>
</tr>
<tr>
<td>2010</td>
<td>12,00</td>
<td>207,33</td>
</tr>
<tr>
<td>2011</td>
<td>14,28</td>
<td>246,72</td>
</tr>
<tr>
<td>2012</td>
<td>15,83</td>
<td>273,50</td>
</tr>
<tr>
<td>2013</td>
<td>17,18</td>
<td>296,83</td>
</tr>
<tr>
<td>2014</td>
<td>17,50</td>
<td>302,35</td>
</tr>
<tr>
<td>2015</td>
<td>15,44</td>
<td>266,76</td>
</tr>
<tr>
<td>2016</td>
<td>14,30</td>
<td>257,07</td>
</tr>
</tbody>
</table>

Fuente: Subdirección General de Hidrocarburos.
FIGURA 7.16. TÉRMINO VARIÁVEL (SIN IMPUESTOS, EN CTS/KG) DE GLP POR CANALIZACIÓN

TABLA 7.24. EVOLUCIÓN DEL PRECIO MÁXIMO DE VENTA DEL GLP CANALIZADO PARA USUARIOS FINALES. CONSUMIDOR DE 500 KG/ANO

<table>
<thead>
<tr>
<th>Año</th>
<th>INDICE</th>
<th>cent/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td></td>
<td>3,63</td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td>3,93</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td>4,05</td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td>4,27</td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td>3,96</td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td>4,31</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>5,60</td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td>5,37</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td>4,53</td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td>5,05</td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td>5,28</td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td>5,83</td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td>6,52</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td>6,62</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td>7,46</td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td>5,88</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td>7,51</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td>8,58</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td>9,39</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td>8,81</td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td>8,88</td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td>6,48</td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td>6,38</td>
</tr>
</tbody>
</table>
8. EFICIENCIA ENERGÉTICA, COGENERACIÓN Y ENERGÍAS RENOVABLES
8.1. EFICIENCIA ENERGÉTICA

8.1.1. Evolución del consumo y la intensidad en España. Comparativa internacional

Durante las últimas décadas España ha avanzado hacia una mayor diversificación energética, destacando la participación de las fuentes energéticas renovables y del gas natural, Figura 8.1. Tras un largo periodo de crecimiento sostenido de la demanda energética, el consumo total de energía primaria alcanza un punto de inflexión en 2007 tras el cual se inicia una senda decreciente, inducida principalmente por la caída de la demanda de los productos petrolíferos y del carbón. En dicho período que coincide con el desarrollo de la crisis económica, la demanda de energía primaria ha mantenido un ritmo descendente dentro de ciertos márgenes de estabilidad. La tendencia a la baja se interrumpe en 2015, con un incremento del consumo del 4,1%, lo que representa una ruptura tras siete años consecutivos de reducciones en la demanda energética.

En 2016, con apenas un incremento del 0,2%, la demanda se ha mantenido prácticamente estabilizada, alcanzando un valor de 123.484 ktep. Prácticamente todas las fuentes energéticas han experimentado un aumento en su demanda de energía primaria, con incrementos entre el 2% del gas natural y el 3,3% de las energías renovables. Una excepción ha sido el carbón, cuyo consumo ha caído un 23,7% en 2016, como consecuencia del cierre en dicho año de varias centrales de carbón de potencia conjunta 932 MW. Esta circunstancia ha tenido impacto en el balance de la demanda, contrarrestando el efecto de las restantes fuentes, a pesar de una contribución del carbón a la misma de tan solo el 8,5%.

Durante este último año destaca el incremento en la demanda asociada a la energía hidráulica (30,6%), favorecido por la mayor disponibilidad del recurso, lo que ha supuesto un aumento notable de la producción eléctrica renovable, ganando peso frente a la convencional en la cobertura a la demanda eléctrica. Otras tecno-
logias renovables que han experimentado en 2016 un crecimiento en su demanda, si bien más modesto, han sido los biocarburantes (+4,7%), la geotermia (+3,1%) y la energía solar térmica (+5,8%). Todas estas aportaciones llevan a una leve mejora en la cobertura de las energías renovables a la demanda de energía primaria, desde el 13,5% en 2015 al 13,9% en 2016.

El potencial de producción autóctona junto al grado de diversificación energético influye en la capacidad de autoabastecimiento, y por tanto, en la dependencia energética, que continua siendo elevada, del orden del 73,3%, unos veinte puntos porcentuales por encima de la media europea. A lo largo de los últimos años, el grado de autoabastecimiento ha mejorado en correspondencia con una progresiva penetración de las energías renovables en el sistema energético, Figura 8.2, cuya producción autóctona supera en la actualidad a la de origen nuclear. En 2016, a pesar de la mayor hidraulicidad, el grado de autoabastecimiento ha disminuido ligeramente respecto al 2015 debido principalmente a la menor producción con biomasa, que representa un tercio de la producción con energías renovables.

La evolución del **indicador de la intensidad de la energía primaria** en España muestra un perfil similar al de la demanda de energía primaria, Figura 8.3, evidenciándose un cambio de tendencia a partir del 2004 hasta llegar a 2009, año en el que comienza una etapa de reducción más suave, coincidente con los primeros años de la crisis económica. A semejanza de otros países de nuestro entorno, posteriormente se observa una nueva tendencia a la baja en la demanda e intensidad energética, debido en gran parte a efectos ligados a cambios estructurales y de actividad.

Desde el inicio de la crisis, la intensidad nacional ha mejorado a un ritmo medio anual del 1,5%, ligeramente inferior a la mejora (2,3%) registrada con anterioridad en el periodo 2004-2008. Esta ralentización se relaciona, entre otras variables, con la evolución de la estructura de suministro.
energético en el periodo posterior a 2008. Concretamente, las circunstancias climatológicas más desfavorables registradas en 2012 y 2015 han penalizado la participación de las energías renovables en la cobertura de la demanda eléctrica, lo que ha tenido que ser compensado con la entrada en funcionamiento de centrales basadas en carbón, contrarrestando el efecto favorable asociado a las tecnologías de generación eléctrica basadas en las energías renovables, visible desde el 2005, Figura 8.4.

Además de la influencia de las tecnologías de generación eléctrica –favorable en coyunturas caracterizadas por la presencia del gas natural y las energías renovables– otros efectos determinantes en la intensidad de energía primaria son el efecto derivado de cambios estructurales en nuestra economía, con mayor presencia en el contexto de la crisis, así como el impacto positivo de las actuaciones promovidas en el marco de los Planes de Acción de Eficiencia Energética aprobados desde el 2004.

La intensidad de energía primaria en 2016 ha disminuido un 2,9%. Esta mejora responde a la evolución favorable de la economía en 2016 con un crecimiento del Producto Interior Bruto (PIB) del 3,2%, lo que lleva a una recuperación del nivel de actividad anterior a la crisis. A ello se une la mejora de eficiencia del sistema de transformación propiciada por una mayor participación de las tecnologías más eficientes, disminuyendo en consecuencia la energía necesaria para la generación energética, que en 2016, como ya se ha dicho, prácticamente se ha mantenido estabilizada frente al año anterior.

Un análisis adicional puede derivarse ajustando las intensidades a paridad de poder de compra,
Figura 8.5. Este tipo de ajuste permite una comparación más realista de las intensidades a nivel internacional, dado que introduce una corrección sobre las diferencias entre países en cuanto a nivel de precios y poder adquisitivo, lo que produce un desplazamiento en vertical de las intensidades nominales. En el caso de España, la intensidad ajustada mantiene el perfil anterior, si bien baja su posición relativa, aumentando a su favor la distancia respecto a la media UE.

En términos de energía final, la demanda por fuentes energéticas, Figura 8.6, evoluciona con un perfil similar al de la energía primaria, observándose singularidades parecidas. En 2016, el consumo de energía final, usos no energéticos
Excluidos, asciende a 81.550 ktep, esto es 1,5% superior al consumo del año precedente. Ello supone una ruptura en la tendencia a la baja iniciada en 2007 y mantenida hasta el 2014, con excepción del repunte del 2010.

Esta evolución se explica por el mayor consumo relativo a los productos petrolíferos (+2,3%) y al gas natural (+1,7%), cuya aportación conjunta a la demanda equivale al 67,1% del total. En menor cuantía han contribuido la electricidad (+0,8%) y las energías renovables (+1,5%). En contraste a lo anterior, el carbón ha disminuido su demanda en un 13,8%. Dentro de las energías renovables, una vez más, su impulso procede de la biomasa y de los biocarburantes, que alcanzan una cobertura de la demanda térmica con energías renovables del 93,5%. Estas dos fuentes han registrado un aumento respecto de sus demandas del 4,7% y 1,2%.

La energía solar térmica y la geotermia, igualmente, han experimentado ligeros avances, si bien su participación en la demanda térmica renovable total es aún escasa (5,8%). El biogás, a diferencia de las restantes fuentes, registra un descenso del 35,1%, debido a una menor utilización de los centrales de cogeneración con biogás. En total, las energías renovables en 2016 han supuesto una cobertura a la demanda global de energía final del 6,6%, participación ligeramente superior a la del año anterior.

El crecimiento de la demanda de energía final (1,6%) a un ritmo inferior al del PIB (3,2%) ha inducido una disminución del 1,6% en la intensidad de energía final en 2016. Esta cifra representa una mejora algo inferior a la registrada en la intensidad primaria, debido a una mayor participación de las tecnologías renovables en el sistema de generación eléctrica. Un análisis comparativo respecto a los países de nuestro entorno, Figura 8.7, muestra también una gran sintonía en la evolución de este indicador con el valor medio de la UE.

El análisis del indicador de intensidad final ajustado a paridad de poder de compra, Figura 8.8, muestra conclusiones similares, mejorando la posición relativa de España respecto a la media europea.
Bajo el impacto de la crisis en España la intensidad final muestra una mejora media anual del 1,6% en el periodo 2008-2016, inferior a la del periodo precedente. Esta diferencia obedece al menor nivel de actividad observable en numerosos sectores económicos que ha afectado al rendimiento de los equipos y procesos al operar éstos por debajo del óptimo de sus capacidades productivas. Este diagnóstico se confirma analizando la evolución de la intensidad de energía final real y a estructura constante, Figura 8.9, que muestra como en el periodo posterior a la crisis se incrementa el protagonismo del factor estructural en la intensidad final en detrimento del factor tecnológico.

El mayor dinamismo de la economía mostrado a partir del 2014 ha posibilitado unos niveles de producción más elevados y con ello un mejor aprove-
El cambio de las capacidades productivas, lo que ha supuesto una mayor relevancia del efecto tecnológico en los últimos años. Por el contrario, la influencia del efecto estructural ha sido desfavorable debido al mayor crecimiento, especialmente en 2015, del peso de las ramas más intensivas en la estructura de valor añadido.

El Figura 8.10 permite diferenciar las tendencias seguidas por los sectores de uso final, así como la gran influencia del sector transporte en la intensidad global, dado su mayor peso en la demanda. En menor medida intervienen el sector industria, con un comportamiento algo más irregular desde el inicio de la crisis, y los sectores servicios y residencial.

8.1.2. Análisis sectorial de la eficiencia energética

Atendiendo a la información más reciente disponible sobre la sectorización de la demanda de energía final, Figura 8.11, se constata una vez más el peso del sector transporte, con el 41,6% del consumo total. Lo sigue el sector industrial, con el 23,5% de la demanda, si bien este sector mantiene una progresiva pérdida de peso relativo en la estructura de la demanda. El conjunto de sectores agrupados dentro de la categoría «Usos Diversos» alcanza en la actualidad el 34,1% de la demanda.

Lo anterior es coherente con el retroceso experimentado por la industria en su aportación al PIB, en estrecha correspondencia con la terciarización creciente de nuestra economía, Figura 8.12. Esto se ha visto reforzado en el contexto de la crisis económica, en el cual toda la industria —manUFACTurera, energía y construcción— se ha visto apreciablemente afectada, y dentro de ésta, el sector de la construcción. Esta dinámica ha llevado a una progresiva reducción de la participación de la industria en la estructura productiva, lo que repercute en la evolución de su intensidad energética de la industria, como se comenta más adelante.

El sector «Usos Diversos» integra a los sectores residencial, servicios y agricultura y otros.
EFICIENCIA ENERGÉTICA, COGENERACIÓN Y ENERGÍAS RENOVABLES

8.1.3. Sector Industria

El sector industrial representa en la actualidad del orden del 24% de la demanda energética total, alcanzando en 2015 un consumo de 18.888 ktep, un 5,4% inferior al del año precedente. El 75% de este consumo se concentra en cinco ramas—metalurgia, minerales no metálicos\(^1\), química, alimentación, bebidas y tabaco y pasta y papel—, Figura 8.13, cuya aportación conjunta al Valor Añadido Bruto (VAB) de la industria es, sin embargo, menor al 30%. Este contraste entre las participaciones en términos de la demanda y del VAB, resulta especialmente acusado en la industria de los minerales no metálicos, donde la contribución al VAB es casi siete veces inferior a la de la demanda energética correspondiente.

Esta característica, visible en las principales ramas industriales, junto con la estructura sectorial
de la industria manufacturera española, caracterizada por una participación aún moderada de las ramas menos intensivas (alimentación y bienes de equipo), induce unos valores elevados de la intensidad energética en la industria manufacturera. Ello explica un valor superior de la intensidad nacional, Figura 8.14, frente a la observada en el conjunto de la UE así como en otros países de nuestro entorno como Francia, Alemania, Reino Unido e Italia.

A partir del 2005, el indicador de la intensidad de la industria manufacturera muestra una tendencia a la baja que continua tras el inicio de la crisis en
2008, disminuyendo en 2015 un 9,9%. Esta mejora obedece a la reducción del 3,7% de la demanda energética junto a la recuperación de la actividad económica, iniciada a mediados del 2014, y que se consolida en 2015 según se desprende de la evolución del VAB y del Índice de producción Industrial (IPI), con aumentos respectivos del 7% y 6,1%. A ello ha contribuido el dinamismo mostrado en 2015 por las ramas ligadas a los bienes de equipo, especialmente las vinculadas a las ramas de vehículos, electrónica, tecnologías de información y telecomunicaciones.

Tomando la industria española en su conjunto, la intensidad energética, Figura 8.15, evoluciona por debajo de la media europea, con una tendencia general decreciente que se ve interrumpida a partir del 2009, coincidiendo con los inicios de la crisis. A partir del 2014 se reconduce la tendencia inicial, que se afianza en 2015 como resultado conjunto de la disminución de la demanda energética (-5,4%) y de la recuperación de la actividad económica de la industria, según se desprende de las mejoras del VAB y del IPI del 4,5% y 3,3%, respectivamente.

En términos relativos, el menor nivel de la intensidad de la industria responde en gran medida al sector de la construcción, cuya demanda energética en la actualidad apenas alcanza el 5% del total de la industria, en contraste con una considerable aportación al VAB, el 23,5% del total.

La actividad del sector de la construcción tiene un efecto de arrastre sobre la demanda de productos industriales, especialmente los relacionados con los minerales no metálicos, por lo que su evolución incide en la demanda e intensidad de las principales ramas de la industria manufacturera. El comportamiento de la industria en su conjunto se ha visto muy condicionado por el ajuste experimentado por el sector de la construcción en el contexto de la crisis. El retroceso de la actividad inmobiliaria ha llevado a una progresiva pérdida del peso relativo de la construcción en el VAB total, lo que ha contribuido al empeoramiento ob-
servado en la intensidad de la industria global en el periodo 2009-2013. A posteriori, la reactivación de la construcción, en particular la asociada a las viviendas, ha tenido un efecto positivo en la mejora de la intensidad de la industria global.

La intensidad energética de la industria está afectada también por la estructura de la demanda energética, Figura 8.16. Dicha estructura se caracteriza por la dependencia de los combustibles fósiles, que en conjunto cubren cerca de dos tercios de la demanda total, ligada a la cobertura de las necesidades térmicas de los distintos procesos industriales.

Destaca en la industria la presencia del gas natural, si bien la electricidad ha ido ganando terreno hasta alcanzar en la actualidad un nivel de demanda próximo al del gas. Estos dos combustibles determinan el comportamiento de la demanda global de la industria, influyendo con ello en la evolución de la intensidad. En 2015, la demanda asociada al gas natural se ha reducido en un 21,2%. En contraste, el consumo de las restantes
fuentes energéticas se ha incrementado, aunque no lo suficiente como para compensar la disminución del primero. Esto ha supuesto una disminución neta de la demanda del 5,4%, contribuyendo con ello a la mejora de la intensidad observada.

Durante los últimos años, el consumo energético de la industria ha ido decayendo progresivamente, debido a la coyuntura económica, la ralentización de la actividad y la evolución al alza de los precios energéticos para los consumidores industriales Figura 8.17.

En el caso de los productos petrolíferos, la caída de su demanda se ha visto reforzada por su sustitución por el gas natural, dada su mayor eficiencia, así como la diferencia de precios entre ambos combustibles, lo que explicaría el repunte de la demanda del gas natural en el periodo 2011-2014. La reducción de los precios energéticos en 2015, junto a la recuperación de la actividad, contribuye al aumento de la demanda de la mayoría de los combustibles, salvo en el caso del gas natural. A la mejora de la intensidad energética industrial en 2015 contribuyen las actividades de las industrias química, papelera y minerales no metálicos, además de la construcción, Figura 8.18. Estas ramas presentan un balance favorable entre las respectivas demandas energéticas y aportaciones al VAB de la industria, lo que ha llevado a una mejora de las intensidades de las industrias manufactureras y global.

Un análisis retrospectivo de la trayectoria seguida por la industria en España y en la mayoría de los países de la UE, permite observar la estrecha dependencia de las variaciones de la intensidad energética con la evolución de los ciclos económicos. En un contexto de recesión, ocurre un desacoplamiento entre los ritmos de variación de la actividad productiva y de la demanda energética asociada. Esto se debe a una menor eficiencia de los equipos utilizados al bajar el grado de utilización de la capacidad productiva, así como al hecho de que una parte de la energía demandada es ajena al nivel de actividad.

Servicios de iluminación, calefacción y acondicionamiento de las instalaciones.
Esto se traduce en una caída menos pronunciada de la demanda energética vinculada a la producción. Por tanto, el consumo unitario tiende a aumentar en periodos de recesión, según se puede comprobar a partir de la observación de las tendencias de los consumos unitarios —consumos energéticos por unidad de producto generado— de la industrias del cemento y del acero, Figura 8.19, integradas la primera dentro del sector de los minerales no metálicos y la segunda dentro del sector metalúrgico que, como ya se sabe, son dos de las ramas más intensivas de la industria.

El incremento del consumo unitario de estas dos ramas es representativo del efecto de la crisis, que ha supuesto una ruptura de la tendencia a la baja iniciada con anterioridad como resultado de mejoras de eficiencia implementadas en dichas ramas. En el caso del cemento, el mayor crecimiento del consumo unitario se ha visto reforzado por una mayor producción de Clinker destinada a exportación, lo que conlleva un aumento del consumo energético para su producción.

En el marco de los Planes de Acción de Ahorro y Eficiencia, se han ido incorporado diversas medidas dirigidas a la mejora tanto de la gestión energética, como de los procesos y equipamientos propios del sector industrial. Más recientemente, el Fondo de Inversión JESSICA-FIDAE y el Programa de ayudas PYMES y Gran Empresa tienen como objetivo facilitar la realización de actuaciones de mejora y gestión de la eficiencia energética en la industria. Se espera con ello una contribución favorable a la mejora de la eficiencia de la industria a más largo plazo.

Nota 1: Usos no energéticos excluidos
Nota 2: A partir del año 2013 se ha establecido un proceso para mejorar la calidad de información destinada a las estadísticas energéticas. Ello significa la reasignación de los consumos de energía procedentes de los sectores o ramas denominados como «no especificadas» hacia los sectores donde realmente se han consumido.

FUENTE: INE/MINETAD/IDAE

<table>
<thead>
<tr>
<th>Pasta, Papel</th>
<th>Metalurgia</th>
<th>INDUSTRIA TOTAL</th>
<th>Construcción</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURA 8.18. CONSUMO E INTENSIDAD EN LAS PRINCIPALES RAMAS INDUSTRIALES, 2000-2015

- Pasta, Papel
- Metalurgia
- INDUSTRIA TOTAL
- Construcción

Notas:
1. Usos no energéticos excluidos
2. A partir del año 2013 se ha establecido un proceso para mejorar la calidad de información destinada a las estadísticas energéticas. Ello significa la reasignación de los consumos de energía procedentes de los sectores o ramas denominados como «no especificadas» hacia los sectores donde realmente se han consumido.
8.1.4. Sector Transporte

El transporte continua siendo el sector de mayor consumo energético en España, con una participación cercana al 42% en la demanda de la energía final. En 2015 su consumo se ha incrementado en un 5,1%, alcanzando un valor de 33.477 ktep, confirmando con ello el cambio de tendencia iniciado el año anterior, tras seis años de retroceso continuo de la demanda, a un ritmo medio anual del 4,7%.

Este aumento de la demanda se explica por el aumento de consumo de los productos petrolíferos (+4%) donde se concentra el 94,6% de la demanda de este sector. Igualmente, se ha incrementado la demanda asociada a la electricidad (+46,0%), gas natural (268,9%) y a los biocarburantes (+1,1%).

Durante los últimos años, se observa un incremento progresivo del uso de propulsantes alternativos en el transporte, como los biocarburantes, la electricidad y el gas natural, este último utilizado mayoritariamente en flotas (autobuses y camiones). A pesar de estos avances, la participación de estos recursos en el transporte total apenas alcanza el 6%, con un claro dominio de los biocarburantes, con una cuota cercana al 80%, Figura 8.20.

En los próximos años se prevé un mayor progreso bajo el impulso de la Directiva 2014/94/UE para la implantación de una infraestructura para vehículos con propulsantes alternativos, transpuesta en España a través de las recientes aprobaciones del Marco de Acción Nacional para el desarrollo del mercado y las infraestructuras para combustibles alternativos en el sector transporte (MAN), y del Real Decreto 639/2016, de 9 de diciembre, sobre la infraestructura de combustibles alternativos. Con todo ello se pretende impulsar en España el sector de las energías alternativas aplicadas al transporte, contribuyendo a la mejora de la
eficiencia energética del transporte así como al objetivo establecido por la Directiva 2009/28/UE relativa al fomento de las energías renovables en este sector en 2020.

El aumento de la demanda energética en 2015 se debe a la recuperación de la actividad económica, que ha supuesto un mayor crecimiento de la movilidad asociada a todos los modos de transporte, Figura 8.21, según se desprende de la información disponible sobre el tráfico de pasajeros y de mercancías, donde se registran incrementos respectivos del 4,5% y 5%. Esta mayor actividad, especialmente el transporte de mercancías, se concentra en el transporte por carretera.

A lo largo de los últimos años, el declive de actividad económica ha tenido un mayor impacto en el transporte de mercancías, que absorbe cerca del 40% del consumo energético del sector, influyendo con ello en la tendencia a la baja de la demanda energética global. Esta situación se mantiene hasta el 2014, cuando aparecen los primeros indicios de recuperación económica, registrándose un repunte de la demanda energética, que se consolida en 2015.

En general, esta mejora se manifiesta en todos los modos de transporte. Destacan el transporte ferroviario y fluvial, donde el declive, en términos relativos, ha sido más acusado durante los años precedentes bajo los efectos de la crisis, Figura 8.22, lo que ha llevado a una pérdida de peso de estos dos modos, por debajo del 2% en ambos casos. Por su parte, los modos carretera y aéreo han mantenido e incluso aumentando su participación. El carácter más intensivo de estos dos modos de transporte, condicionan en gran medida la evolución de la demanda e intensidad del transporte en su conjunto.

Un análisis de los factores determinantes del mayor peso energético del transporte —especialmente en carretera—, apunta a la antigüedad del
parque automovilístico y a la elevada movilidad asociada al uso del vehículo privado y al transporte de mercancías y pasajeros. A esto se suma el carácter periférico y de paso de nuestro país para el tráfico de mercancías por carretera.

En particular, el vehículo privado absorbe más de la mitad del consumo en carretera, Figura 8.23, lo que equivale al 41% de todo el consumo en transporte, por lo que el uso de estos vehículos junto a un grado de ocupación reducido, incide de manera notable en la demanda e intensidad energética del transporte.

A lo largo de las dos últimas décadas el incremento notable del parque de vehículos privados, Figura 8.24, ha coincidido con la dieselización del mismo desde inicios de los 90. La mayor incorporación de vehículos diésel —actualmente el 56,7% del parque— unido a factores sociales (mayores
No obstante lo anterior, estas diferencias entre vehículos se están atenuando en los últimos años como resultado de un incremento en la demanda de vehículos de gasolina motivado por el aumento de las ventas de vehículos híbridos de gasolina dotados de la etiqueta ECO, así como por una mayor concienciación ciudadana sobre los problemas de calidad de aire. A ello se suman las mejoras tecnológicas asociadas a este tipo de vehículos, cuyos progresos, en términos relativos, Figura 8.25, superan los de los vehículos diésel. En general, los avances tecnológicos producidos en el parque automovilístico nacional como resultado de la entrada en el mercado de nuevos desarrollos en motores y diseños, favorece la progresiva renovación del parque automovilístico y con ello la mejora de la eficiencia del transporte.

Otro factor adicional es el precio de los carburantes, siendo en España inferior al de países vecinos como Portugal y Francia, Figura 8.26. Esto favorece las cargas en España de los depósitos de combustible de camiones de transporte de largo recorrido. Esta circunstancia incide en el efecto conocido como border-trade, asociado a ventas a

recorridos anuales respecto a los de gasolina) como técnicos (mayor cilindrada y elementos catalizadores) inherentes a este tipo de vehículos, explican el crecimiento diferencial del consumo de gasoil frente al de la gasolina en el parque automovilístico. Esta circunstancia condiciona la evolución de la demanda e intensidad del transporte por carretera.
países fronterizos a causa del diferencial de precios, efectuándose el consumo fuera de nuestro país, si bien a efectos estadísticos computa a nivel nacional, con el consiguiente impacto en la intensidad.

A fin de diferenciar el consumo doméstico del producido fuera de nuestras fronteras, algunos países realizan una corrección que puede alcanzar hasta el 20% del consumo del transporte en carretera. La aplicación de un método de ajuste similar en España conduciría a una disminución del consumo doméstico y, con ello, a una mejora del correspondiente indicador de intensidad. En línea con lo anterior, el IDAE realizó un estudio sobre el consumo del parque privado de turismos que ha permitido valorar el alcance de este efecto en España, ascendiendo al 6% del consumo en el caso de la gasolina.

Todos estos factores, Figura 8.27, determinan la evolución del consumo e intensidad del transporte en España, un 20% inferior al indicador correspondiente al conjunto de la UE.
La tendencia observada a partir del 2004 en España es a la baja, lo que supone un mayor acercamiento entre los indicadores nacional y europeo, Figura 8.28. Esta evolución responde a mejoras de eficiencia inducidas por actuaciones implementadas en el marco de los Planes de Acción de Ahorro y Eficiencia Energética, reforzadas por efectos estructurales y de actividad causados por la crisis en los distintos sectores de la economía. En 2015 el indicador nacional se ha incrementado en un 1,8%, parcialmente inducido por el aumento de la demanda energética del sector asociada a la recuperación de la movilidad y tráfico de mercancías.

Actualmente se cuenta con distintas medidas dirigidas al sector transporte, especialmente en...
carretera, con las que se espera contribuir a la reducción de la intensidad energética. Estas medidas, agrupadas bajo tres tipologías, se orientan respectivamente hacia la mejora de la eficiencia del parque de vehículos, la promoción del cambio modal, y el uso eficiente de los medios de transporte.

Destacan las actuaciones del primer tipo, entre las que se dedica una especial atención a los vehículos turismos dada su relevancia en términos energéticos y medioambientales. Son varios los planes y programas de ayudas a la adquisición de vehículos, que se han ido implementando en los últimos años a fin de posibilitar la renovación del parque automovilístico. Los Programas PIVE, MOVELE y PIMA Aire, con un presupuesto conjunto de 1.186 M€, son un ejemplo de ello. Desde su puesta en marcha, estos programas han permitido la renovación de un total de 1.175.564 turismos y vehículos ligeros, los dos primeros, y de 50.000 vehículos comerciales, el último. Mas recientemente, se ha puesto en marcha el Plan MOVEA, con un presupuesto inicial de 16,6 M€, bajo el cual se unifican las ayudas existentes dirigidas a la adquisición de vehículos alternativos.

Otras actuaciones en el sector son los Programas de Ayudas al Cambio Modal y Uso Eficiente de los Modos de Transporte y Actuaciones de Eficiencia en el sector ferroviario, ambos financiados por el Fondo Nacional de Eficiencia Energética. Asimismo, con relación a la conducción eficiente, en el sistema nacional de enseñanza para la obtención del permiso de conducción de vehículos turismo e industriales se han incorporado técnicas de conducción eficiente desde enero de 2014. Se espera que todas estas medidas tengan un efecto positivo sobre la mejora de la intensidad del sector transporte, minimizando así su impacto sobre la intensidad global.

8.1.5. Sector Usos Diversos

Los sectores agrupados dentro de la categoría «Usos Diversos» vienen aumentando su participación en el consumo final de energía, en contraste con el sector industrial, cuyo peso relativo ha ido reduciéndose, Figura 8.29.

En 2015, el consumo conjunto de los sectores agrupados bajo este epígrafe ha registrado un incremento del 2,6%, debido principalmente a la mayor demanda de productos petrolíferos (+5,2%) y de gas natural (+10,2%), que constituyen el 42,8% de la demanda. Por otra parte, la demanda eléctrica, con una cobertura del 46,1% sobre el total, se ha mantenido prácticamente estabilizada, con un ligero decremento del 0,8%.

El sector de los edificios concentra la mayor parte del consumo del sector «Usos Diversos» —el 89,1% del consumo total y el 94,8% del consumo eléctrico—, con una contribución del 50% al consumo de energía en términos energéticos, aunque se espera que en los próximos años vaya cayendo dado el consenso de los estados miembros europeos sobre la mejora de la eficiencia energética de los edificios. Los programas de ayuda para la mejora de la eficiencia energética de los edificios, como el Programa PIHEA, con un presupuesto de 36 M€, se han buscado para fomentar el ahorro energético en este sector. Otros programas de ayuda son el PIHEPA y el PIHEP, con un presupuesto de 100 M€.

5 Programa, en vigor desde mayo de 2015, dotado de un presupuesto inicial de 8 M€.
6 Programa, en vigor desde diciembre de 2015, dotado de un presupuesto inicial de 13 M€.
EFICIENCIA ENERGETICA, COGENERACIÓN Y ENERGÍAS RENOVABLES

El predominio de los combustibles refleja la importancia que tiene en este sector los usos de tipo térmico, entre ellos la calefacción, donde se concentra el 44% de la demanda global de los hogares españoles, Figura 8.36, cubierta mayoritariamente con combustibles de origen fósil y recursos renovables. Las bajas temperaturas registradas en el invierno del 2015 contribuyen a explicar el aumento de la demanda asociada a calefacción, en cuya cobertura los productos petrolíferos han incrementado su participación dicho año.

Desde el 2005, la demanda energética media de los hogares ha seguido una tendencia a la baja, que se ha visto reforzada a partir del cambio de coyuntura económica iniciado en 2008, y la pérdida de poder adquisitivo de los hogares, Figu-
ra 8.31. En este contexto, la menor capacidad de gasto de las familias junto al efecto inducido por las mejoras tecnológicas en el equipamiento e instalaciones de las viviendas ha condicionado la adopción de hábitos más conservadores de consumo y reducido los niveles de consumo energético por hogar.

A partir del 2014 se empiezan a apreciar ciertas señales de recuperación económica que se consolidan en 2015. Esto, unido al abaratamiento del petróleo y a unas condiciones favorables de financiación, ha dado lugar a un aumento de la renta de los hogares y a su capacidad de gasto, lo que unido a la climatología, podría explicar el repunte observado en 2015 en la demanda energética del sector residencial. Esto equivale a un incremento del 0,9% en el indicador de la intensidad energética de los hogares.

Diferenciando este indicador según las demandas eléctrica y térmica de los hogares, Figura 8.32,
se observa un incremento de la intensidad térmica del 2,4%, impulsado por la demanda de calefacción asociada a las bajas temperaturas registradas en el invierno del 2015. Por su parte, la intensidad eléctrica ha disminuido un 1,2%. Este último indicador muestra una tendencia a la baja desde el 2011, disminuyendo a una tasa media anual del 2,8%, mientras que la intensidad ligada a la demanda térmica, presenta un perfil algo más suavizado. Esta diferencia es coherente con los progresos tecnológicos en la iluminación y equipamiento electrodoméstico y con el empleo mayoritario de combustibles fósiles en la cobertura a la demanda de calefacción.

Otro factor explicativo es el incremento diferencial de los precios de la electricidad y del gas a los consumidores domésticos, Figura 8.33. Ambos precios energéticos manifiestan un crecimiento progresivo desde el 2008, si bien en el caso de la electricidad ha sido especialmente acusado, incrementándose a una tasa media anual del 7% anual, por encima de la media de la UE, lo que conlleva una moderación del uso de equipamientos eléctricos.

Como antes se ha mencionado, la electricidad ha ido incrementando su presencia en la cobertura de la demanda energética de los hogares españoles, Figura 8.30, en sintonía con los hogares de otros países de la UE, alcanzando en 2005 el mismo nivel que éstos, Figura 8.34.

Esta dinámica habría sido propiciada por la progresiva penetración del equipamiento eléctrico en los hogares españoles. A partir de 2005 se evidencia una tendencia a la baja tanto en España como en los países de la UE. En ambos casos, esto se asocia al efecto de la crisis sobre los hábitos de consumos, así como a la dinámica de los precios energéticos que afectan a los hogares, sin olvidar las mejoras tecnológicas de los electrodomésticos, acompañado de cierta saturación en el nivel de equipamiento.

Figura 8.32. Indicadores de la intensidad del sector residencial, 2000-2015

Fuente: INE/MINETAD/IDAE
La bonanza climatológica justifica una menor demanda de la calefacción en España, del orden del 44%, frente al 65% en el conjunto de la UE, Figura 8.36, y esta diferencia en el peso relativo de la calefacción condiciona en gran medida la intensidad energética del sector residencial. Considerando los restantes usos, la siguiente posición en orden de magnitud la ocupa el equipamiento electrodoméstico, con algo más de un cuarto del consumo total, destacando entre éstos los frigorí-
En el tramo de menos peso se encuentra el aire acondicionado con el 1% del consumo total, si bien al tratarse de un servicio estacional, puede ocasionar puntas de demanda. Es previsible un impulso a la eficiencia de este sector como resultado de la aplicación conjunta de las medidas legislativas que afectan a la edificación y de otras iniciativas, dirigidas tanto a la...
rehabilitación de la envolvente térmica de los edificios existentes como a la mejora de la eficiencia de las instalaciones térmicas y de iluminación.

Entre las medidas legislativas destaca el efecto asociado a la aplicación del Real Decreto 235/2013, de 5 de abril, con más de dos millones de certificados de eficiencia contabilizados desde la entrada en vigor de dicho real decreto, correspondiendo la mayoría a edificios existentes. A esto se suma la puesta en marcha de iniciativas como el Programa PAREER-CRECE\(^4\), aprobado a finales de 2013, la Ley 8/2013, de 26 de junio, de rehabilitación, regeneración y renovación urbanas, y el Plan Estatal de fomento del alquiler de viviendas, la rehabilitación edificatoria, y la regeneración y renovación urbanas, 2013-2016, con un claro efecto dinamizador de la mejora de la eficiencia en el ámbito de los edificios del sector residencial.

8.1.7. Sector Servicios

Dentro del sector servicios se incluye un paquete heterogéneo de actividades, relacionadas básicamente con los sectores oficinas, el comercio, hostelería y restauración, la sanidad y la educación. El conjunto de todas estas actividades representa una aportación al PIB del 67,2% así como un consumo equivalente al 12,5% de la demanda de energía final, que en 2015 alcanza un valor de 10.036 ktep.

Diferenciando por ramas, destacan los sectores de oficinas y comercios con el 68,3% de la demanda de energía final, la hostelería y restauración con el 12,5% y la sanidad con el 4,3%. En términos de VAB, el comercio representa el 40,6%, la hostelería y restauración el 27,7% y la sanidad el 9,3%.

\(^4\) El Programa PAREER, aprobado a finales del 2013 con un presupuesto de 125 M€, se ha ampliado en mayo de 2015 con dotación presupuestaria adicional de 75 M€, que permite reforzar las actuaciones previstas en el Programa PAREER, modificándose a partir de entonces su denominación como Programa PAREER-CRECE.
da energética y el 69% del Valor Añadido Bruto (VAB) del sector. De ahí que la evolución de estas dos ramas determine en gran medida la intensidad energética del sector.

En 2015, en un contexto de recuperación económica, el Valor Añadido Bruto (VAB) de este sector se ha incrementado en un 2,6%, debido principalmente al mayor empuje de las ramas vinculadas al comercio, en particular, las del comercio al por mayor, y en menor medida a la actividad ligada a las oficinas. Esto coincide con un aumento del 13,4% en la demanda energética necesaria para el desarrollo de estas actividades. El crecimiento de la demanda, por encima, del asociado al VAB, ha supuesto un empeoramiento de la intensidad energética del sector en 2015, registrando un incremento del 10,5%, Figura 8.38.

La evolución de la intensidad responde a la estructura de la demanda, Figura 8.39, en la que destaca la elevada representatividad de la electricidad —el 61,7%—. El grueso de esta demanda se encuentra vinculado a las necesidades de los sectores de las oficinas y el comercio en cuanto a iluminación, climatización, equipamiento ofimático, tecnologías de información y comunicación (TIC), etc.

En 2015 se ha incrementado la demanda asociada a todas las fuentes energéticas, destacando el gas natural, cuyo consumo casi se ha duplicado, y la electricidad, con un incremento del 2,4% en su demanda. Por tanto, estas dos fuentes explican la evolución de la intensidad en 2015.

Más de la mitad del incremento de toda la demanda energética del sector servicios en 2015 se debe a la actividad del comercio, cuya intensidad se ha incrementado notablemente dicho año, Figura 8.40. El carácter intensivo de esta rama, así como su mayor peso relativo en el consumo, pa...
rece haber influido más decisivamente en el empeoramiento observado en la intensidad global del sector servicios en 2015.

Un análisis comparativo de la evolución de la intensidad energética a nivel de la UE, permite observar el posicionamiento del indicador por debajo del correspondiente a la media europea, Figura 8.41, con una progresiva aproximación entre ambos. A partir del 2011 se observa una paulatina tendencia decreciente del indicador en España, interrumpida en 2015 como resultado de la recuperación de este sector que como ya se ha dicho ha supuesto un aumento de la demanda, vinculado a la actividad del comercio, que es una de las ramas más intensivas de este sector.
En contraste con lo anterior, la intensidad eléctrica del sector servicios en España evoluciona por encima de la media de la UE, Figura 8.42, manteniendo un incremento progresivo respecto al indicador europeo. El valor superior de la intensidad eléctrica nacional se debe al peso de la electricidad en la cobertura de las necesidades de este sector, del orden de veinte puntos porcentuales por encima de la media europea. El menor consumo eléctrico en los países del centro y norte de Europa se debe en gran medida al mayor uso de la cogeneración y redes de distrito para la cobertura de sus demandas energéticas.

En los últimos años se observa una atenuación en la evolución del indicador nacional, posiblemente relacionado con el efecto combinado de la subida de precios de la electricidad y de la crisis. En 2015 la intensidad eléctrica se ha mantenido estabilizada con un ligero decremento del 0,2%, debido al menor crecimiento de la demanda eléctrica frente al del crecimiento del VAB del sector.

Con el fin de reducir el consumo energético de este sector se han acometido numerosas actuaciones, buena parte de ellas, dentro de los distintos Planes de Acción de Ahorro y Eficiencia Energética. En el marco del último Plan de Acción 2014-2020 se contemplan diversas actuaciones dirigidas a la mejora de la eficiencia del parque de edificios públicos, según lo dispuesto en el artículo 5 de la Directiva 2012/27/UE relativa a la eficiencia energética. Igualmente, en lo que se refiere a los servicios públicos, y en concreto, a los sistemas de alumbrado exterior, se cuenta con diferentes iniciativas, de las cuales destaca el Programa de ayudas al alumbrado exterior municipal⁹, financiado por el Fondo Nacional de Eficiencia Energética.

Se espera asimismo una contribución favorable a la eficiencia bajo el impulso de la Ley 15/2014, de

⁹ Programa, en vigor desde mayo de 2015, dotado de un presupuesto inicial de 36 M€, con origen en el Fondo Nacional de Eficiencia Energética.
En el periodo anterior a la crisis, Figura 8.44, desde el 2005 se observa en España una tendencia a cierta mejora en el VAB del sector, si bien por debajo de la media europea. Esta mejora parece mantenerse en el contexto de la crisis. En cuanto a la demanda energética, en España se constata una mejora de comportamiento a partir del 2004, visiblemente superior al de la UE. Dicha mejora se ha visto impulsada por una ganancia del peso relativo del subsector agrícola y ganadero, menos intensivo energéticamente, a lo que se suman mejoras tanto en equipos como en técnicas de regadío. Esta dinámica cambia en 2011, ya entrada la crisis, en correspondencia con un repunte en la demanda que se estabiliza en 2014. A partir de entonces se registra de nuevo una tendencia a la mejora, inducida en 2015 por una disminución del consumo del 10,4%, estableciéndose así la convergencia con la evolución del conjunto de la UE.

16 de septiembre, de racionalización del Sector Público por la que introducen una serie de requisitos de eficiencia energética para la adquisición de bienes, servicios y edificios por las Administraciones Públicas Centrales.

8.1.8. Sector Agricultura y Pesca

El sector de la agricultura y pesca representa el 3,1% de la demanda de energía final y el 2,9% del PIB. A pesar de este bajo peso relativo, no debe olvidarse que actualmente España, junto a Italia y Francia, aportan cerca del 50% de todo el VAB generado por la actividad de este sector en la UE. El peso relativo de este sector en el conjunto de la economía nacional muestra una tendencia a la baja, Figura 8.43. En los últimos años parece haber ganado cierta representatividad lo que ha sido inducido probablemente por el mayor impacto de la crisis sobre los otros sectores productivos.
En coherencia con la evolución conjunta de los parámetros energético y económico anteriores, se constata una mejora continua de la intensidad energética de este sector en España en el periodo 2005-2010, Figura 8.45, en línea con la trayectoria seguida por el conjunto de la UE. Tras un breve empeoramiento producido en el indicador nacional durante los dos años siguientes, parece haberse recuperado la tendencia a la baja, registrándose en 2015 una mejora del 7,3%, lo que sitúa la intensidad en el nivel del 2010. Esta reciente evolución lleva a una mayor aproximación con el indicador europeo, mostrando ambos un perfil similar, manteniéndose el indicador nacional un 20% por debajo de la media europea.
EFICIENCIA ENERGETICA, COGENERACIÓN
Y ENERGÍAS RENOVABLES

8.2. COGENERACIÓN

De acuerdo con los datos publicados por la Comisión Nacional de los Mercados y de la Competencia (CNMC) sobre los resultados de liquidación del 2016 de la retribución de las instalaciones de producción de energías renovables, cogeneración y residuos, las instalaciones de cogeneración en operación a finales de dicho año, suponen una potencia total de 5.997 MW, lo que indica cierta estabilización respecto a la situación del año precedente. De acuerdo a esta misma fuente, la producción eléctrica vertida a red en 2016 se ha incrementado en un 3,6% respecto al año anterior, alcanzando un valor de 23.981 GWh.

Este incremento está relacionado con el empuje de la actividad empresarial procedente de la industria manufacturera, donde se ubica el mayor número de instalaciones de cogeneración. Por otra parte, la caída de los precios del gas natural (+20,1%) para usos industriales en 2016, ha contribuido a esta mayor producción, dada la preponderancia de este combustible en las instalaciones cogeneradoras. En consecuencia, la cobertura a la demanda eléctrica nacional bruta Figura 8.46 ha experimentado una leve mejoría de 0,3 puntos porcentuales, alcanzando el 9,1% en 2016.

A partir de la Estadística de Centrales de Cogeneración se obtiene un análisis más detallado de la situación correspondiente al año 2015. En dicho año, las instalaciones registradas suman una potencia total instalada equivalente a 6.018,2 MW50.

50 Las estadísticas elaboradas por el MINETAD/IDAE y la CNMC tienen distintos objetivos: Las primeras se orientan a conocer los parámetros técnico-energéticos de funcionamiento de las instalaciones de cogeneración, mientras que las segundas se centran en el régimen económico ligado a las instalaciones de generación eléctrica a partir de fuentes de energía renovables, cogeneración y residuos. Por ello, los grupos considerados dentro de las estadísticas de ventas CNMC se corresponden con los criterios definidos por la regulación vigente, pudiendo darse el caso de instalaciones que aun siendo cogeneradoras se adscriben al grupo de biomasa.
El balance neto de las altas y bajas registradas en las instalaciones de cogeneración en 2015 respecto al año anterior registra 2 instalaciones más así como una disminución de la potencia instalada de 14,6 MW. En términos de potencia, es el sector industrial quien induce este saldo negativo, impulsado por la baja de una central de potencia 24,13 MW, magnitud superior a las aportaciones positivas tanto del sector servicios (+0,35 MW) como industrial (+9,24 MW). En cuanto al número de instalaciones, ha sido el sector servicios el que aporta las 2 nuevas instalaciones.

La ligera reducción de la potencia instalada junto a un mayor número de centrales disminuye la potencia media de las instalaciones de cogeneración, de 8,44 a 8,39 MW, valor en todo caso cercano al tamaño medio de las instalaciones correspondientes al sector industrial —10,07 MW—, que representan el 93,7% de toda la potencia instalada. En el sector Usos Diversos, integrado por los sectores servicios\(^{11}\) y residencial, las instalaciones son de menor tamaño, con una potencia media 2,94 MW. Desde finales de los 90 su representatividad ha ido creciendo hasta estabilizarse más recientemente por debajo del 9%.

El predominio de la industria, Figura 8.47, explica la estrecha dependencia de la cogeneración con la evolución de este sector, donde la cogeneración está presente en una amplia diversidad de ramas.

Un análisis más detallado de la distribución de las instalaciones de cogeneración existentes en España según su potencia, Figura 8.48, permite apreciar que cerca de un 20% se encuentran en el intervalo de 5 a 10 MW. Por debajo de este rango de potencia se encuentra el 58% de las instalacio-

\(^{11}\) Dentro del sector servicios se incluye la actividad relacionada con el transporte y comunicaciones.
nes, que en conjunto apenas representan el 11,5% de la potencia total instalada. Más de la mitad de estas instalaciones cuentan con una potencia inferior a 1MW y están localizadas en su mayoría en los sectores servicios y residencial, a los que dan cobertura en sus necesidades térmicas.
Por encima del límite de 10 MW se encuentra el 22,2% de las instalaciones restantes, cuya potencia acumulada alcanza el 70,5% de toda la potencia instalada a nivel nacional. Estas instalaciones de mayor tamaño, en general, están presentes en el sector industrial, Figura 8.49, con potencias unitarias superiores a 5 MW en casi todas las ramas.

Entre las instalaciones de mayor potencia, destacan las correspondientes a los sectores de la refinería y de la siderurgia, con potencias unitarias entre 6 y 2,5 veces superiores a la media nacional, respectivamente. A más distancia se encuentran los sectores químico y papelero donde las potencias unitarias prácticamente duplican el valor medio nacional.

Continuando con la sectorización de las instalaciones de cogeneración, Figura 8.50, a un nivel más detallado, dentro de la industria destacan cuatro ramas —Industria Agrícola, Alimentaria y del Tabaco, Química, Pasta y Papel y Refinerías—, que conjuntamente suman el 71% de la potencia total en instalada y el 77,4% de la potencia en este sector. En 2015 destaca la industria química donde se han concentrado las bajas producidas en la cogeneración industrial en términos de potencia.

A continuación se ofrece un mayor detalle de la evolución de la potencia y del número de las instalaciones de cogeneración existentes en España según sectores a lo largo del periodo 2000-2015.
El análisis de las instalaciones de cogeneración según sus rendimientos, Figura 8.51, tomando como referencia los umbrales del 75%12 y 80%13 definidos por la Directiva 2004/8/CE relativa al fomento de cogeneración, permite observar que en 2015 las instalaciones de rendimiento inferior a los límites señalados presentan un saldo neto positivo en términos de potencia de 204,4 MW.

12 Umbral del 75% correspondiente a las tecnologías: turbina de vapor a contrapresión; turbina de gas con recuperación de calor; motor de combustión interna; micro turbinas; motores Stirling; y pilas de combustible.

13 Umbral del 80% correspondiente a las tecnologías: turbina de gas en Ciclo Combinado con recuperación de calor; y turbina con extracción de vapor de condensación.

Dentro de este grupo se concentra 69,2% de las altas producidas en 2015, así como el 63,6% de la potencia instalada en dicho año. El balance de las instalaciones de rendimiento superior ha sido más desfavorable. Este grupo ha registrado el 70% de las bajas en cuanto a potencia, lo que arroja un saldo neto negativo de 218 MW. El resultado global de las aportaciones de ambos grupos ha supuesto una disminución del rendimiento global, desde el 76,6% en 2014 hasta el 69,7% en 2015.

Las tecnologías más decisivas dentro de ambos grupos han sido el ciclo combinado y la turbina de gas con recuperación de calor, si bien sus efectos han ido en sentido opuesto en uno u otro caso.
El análisis por tecnologías, Figura 8.52, permite afirmar que en términos absolutos la tecnología dominante continúa siendo el motor de combustión interna, presente en el 75,5% de las instalaciones existentes y que alcanza el 43,9% de la potencia instalada. En cuanto a potencia, le siguen en orden de magnitud las tecnologías de ciclo combinado y la turbina de gas con el 52,3% de la potencia instalada, que están presentes en el 21,9% de las instalaciones de cogeneración. Esto último es debido al mayor tamaño medio asociado a estas tecnologías, especialmente en el caso del ciclo combinado, con 33,5 MW de potencia unitaria, del orden de siete veces superior al tamaño medio —4,9 MW— de las instalaciones equipadas con motores de combustión interna.

La producción eléctrica generada en 2015 por las instalaciones de cogeneración, incluyendo la producción vertida a red, se ha incrementado en un 3,2%. Destaca la aportación del fueloil, con una
Las energías renovables, igualmente, han aumentado su presencia en las instalaciones de cogeneración, principalmente bajo el impulso de las actividades ligadas a la industria del papel, al tratamiento de residuos, y en menor medida a la industria maderera. No obstante, su participación en términos de producción es aún moderada, por debajo del 5% del total.

La evolución de estas dos fuentes ha ido acompañado de un retroceso en la participación de otros recursos, tradicionalmente presentes en el sector de la cogeneración, como el fueloil y gas de refinerías. La diferencia de precios entre combustibles ha favorecido esta sustitución por el gas natural y las energías renovables, disponibles a precios de adquisición más bajos frente al fuelóleo. Además, en el caso del gas natural, la mayor eficiencia del
combustible justifica la decisión de cambio en las instalaciones cogeneradoras.

Atendiendo a la distribución territorial de las instalaciones de cogeneración, Figura 8.54, en 2015 destacan cinco Comunidades Autónomas en las que se concentra el 59% de las instalaciones existentes, tanto en número como en potencia instalada: Cataluña, Andalucía, Valencia, Castilla y León, y Galicia.

Estas comunidades concentran el 59,4% de la actividad industrial, según información disponible del INE, lo que pone de manifiesto la correspondencia entre dicha actividad y la cogeneradora.

Respecto a la distribución entre Comunidades Autónomas de la actividad cogeneradora, en cuanto a potencia instalada, número de instalaciones y tamaño medio de las instalaciones, el Figura 8.55 muestra la gran heterogeneidad existente a nivel geográfico. No obstante, destacan cinco Comunidades Autónomas —Cataluña, Galicia, Castilla y León, Madrid y País Vasco— en las que la representatividad a efectos de potencia instalada y de número de instalaciones es más equilibrada. Estas Comunidades Autónomas, se caracterizan por los siguientes términos porcentuales de potencia —instalaciones sobre el total: 18,7% - 18,8% en Cataluña; 8,5% - 8,5% en Galicia; el 9,6% y 9,6%
La evolución actual de la cogeneración en España está condicionada por el nuevo régimen retributivo establecido por el Real Decreto 413/2014, de 6 de junio, que regula la actividad de producción de energía eléctrica a partir de fuentes de energía renovables, cogeneración y residuos. Se espera asimismo un impacto favorable asociado a las Directivas 2010/31/UE relativa a la eficiencia energética de los edificios y 2012/27/UE relativa a la eficiencia energética. Ambas directivas destacan la importancia de la cogeneración de alta eficiencia, con hincapié en la cobertura de la demanda energética en los edificios de nueva construcción, en el caso de la Directiva 2010/31/UE, y en los sistemas urbanos de calefacción y refrigeración, en el caso de la Directiva 2012/27/UE.

en Castilla y León; 3,7% - 4,3% en la Comunidad de Madrid, y 6,7% - 8,4% en el País Vasco.
Esta última Directiva insta a los Estados Miembros a realizar una evaluación del potencial de cogeneración de alta eficiencia y de los sistemas urbanos de calefacción y refrigeración. Este requerimiento ha sido recientemente incorporado en la legislación nacional a través de la reciente aprobación del Real Decreto 56/2016, de 12 de febrero, por el que se transpone la Directiva 2012/27/UE en lo referente a auditorías energéticas, acreditación de proveedores de servicios y auditores energéticos y promoción de la eficiencia del suministro de energía.

8.3. ENERGÍAS RENOVABLES

8.3.1. Las energías renovables en 2016

En un contexto de recuperación económica con crecimiento sostenido, las energías renovables han incrementado su presencia en el balance de energía primaria correspondiente al año 2016 en cuatro décimas porcentuales con respecto al año anterior, aportando un 13,9% de los consumos primarios. En términos relativos, destaca en el balance primario de energía la fuerte caída registrada por los consumos primarios de carbón, un -23,7%, compensada por el incremento de las aportaciones hidráulicas derivadas de una mayor disponibilidad de recursos hídricos, un 30,6%.

La demanda total de energía primaria, Figura 8.56, creció en su conjunto un 0,2% con respecto a 2015, siendo las energías renovables las líderes del crecimiento de los consumos primarios con un incremento en su consumo del 3,3%, por encima del petróleo (2,7%), la energía nuclear (2,2%) y el gas natural (2%). Además de la energía hidráulica, presentan también incrementos en sus contribuciones a la demanda primaria de energía recursos renovables como los biocarburantes, con un incremento del 4,7%, la solar térmica, un 5,8% y, en menor medida, la geotermia con un 3,1%.
Por su parte, la demanda de energía final, usos no energéticos excluidos, alcanzó los 81,6 millones tep, incrementándose en un 1,5% con respecto a 2015. Las energías renovables han mantenido prácticamente su peso en el balance de energía final, Figura 8.57, pese a la fuerte contracción experimentada de los consumos imputables a calor de las cogeneraciones con biogás, un 57,4%. Esta caída ha sido compensada por los crecimientos registrados por los consumos de la energía solar térmica (5,8%), de los biocarburantes, (4,7%), de la geotermia (3,1%) y, en menor medida de la biomasa térmica.

Casi tres cuartas partes de las aportaciones renovables al balance de energía final tienen su origen en la biomasa, que supera ya un consumo de 4 millones de tep: 3.464 ktep, a instalaciones térmicas, calderas, estufas y chimeneas ubicadas en los sectores residencial, industrial y servicios, y los restantes 547 ktep a consumos imputables a la generación de calor de la cogeneraciones.

Los biocarburantes son el segundo recurso en importancia, cerca de la quinta parte del consumo final renovable, aportando algo más de 1 millón de tep: 85% de biodiesel y el resto con bioetanol. La energía solar térmica, con 3,8 millones de m² de superficie instalada, representa algo más del 5% del consumo final total de energías renovables. Por su parte, las aportaciones del el biogás y la geotermia son aún poco representativas, un 0,7% y un 0,4%, respectivamente.

Con respecto a la potencia del parque generador de electricidad, en 2016 descendió ligeramente tras una larga periodo de crecimiento continuado. Concretamente, se registró un descenso del 0,9% respecto al año anterior, motivado por el cierre de varias centrales de carbón que suman conjuntamente 932,2 MW. La incorporación de nueva potencia fue exclusivamente renovable y se situó en el entorno de los 40 MW formados por centrales básicamente eólicas y solares.
La demanda de energía eléctrica en España volvió a crecer en 2016, aunque mostró una tasa inferior a la del año anterior, un 0,8%, contenida en parte por unas temperaturas más suaves que las registradas en 2015. Por su parte, la producción bruta de electricidad se contrajo en un 2,3% y el saldo de intercambios internacionales resultó importador por segunda vez desde el año 2003. El producible hidráulico se situó un 16% por encima del valor medio histórico, lo que ha dado lugar a incremento de la producción eléctrica con recursos hidráulicos de un 29,3% en detrimento de la producción eléctrica con carbón que se contrajo en un 29%.

En la estructura de generación eléctrica del año 2016, Figura 8.58, el conjunto de las energías renovables supusieron el 38,1% de la producción eléctrica bruta total. Cerca del 47% de la producción eléctrica renovable fue satisfecho por energía eólica y el 35% por hidráulica (exceptuando la generación eléctrica procedente de bombeo), el 13% fue satisfecho por la energía solar y el 5% restante por los recursos provenientes, por este orden, de la biomasa, el biogás y los residuos sólidos urbanos. En conjunto, las energías renovables aportaron 104,607 GWh al sistema.

De los 17,2 millones de tep de energías renovables consumidos en 2016, Figura 8.59, cerca del 69% se ha destinado a la producción de electricidad, mientras que la producción de calor ha supuesto casi una cuarta parte y el consumo de biocarburantes cerca del 6% del consumo total de energías renovables.

En la Tabla 8.2 puede observarse el detalle de la producción energética con recursos renovables durante 2016. El 30% de la producción energética renovable procede de recursos biomásicos, un 24% tiene su origen en el recurso eólico, las energías hidráulica y solar representan un 18% cada una, los biocarburantes aportan el 6% del total de la energía renovable producida y los residuos sóli-
FIGURA 8.38. ESTRUCTURA DE GENERACIÓN ELÉCTRICA, 2016

FIGURA 8.59. DISTRIBUCIÓN DE LA CAPACIDAD DE PRODUCCIÓN DE ENERGÍA CON FUENTES RENOVABLES EN 2015
En aquellos años de menor disponibilidad de recursos o con contracciones de la demanda energética, la evolución durante ese periodo muestra una tendencia creciente en el consumo primario de estos recursos moderada coyunturalmente en aquellos años de menor disponibilidad de recursos o con contracciones de la demanda energética.

La composición de la cesta de recursos renovables en lo que va de siglo ha pasado también por significativos cambios. Mientras que en el año 2000 los biocombustibles (biomasa, biogás, residuos sólidos urbanos y biocarburantes) y la energía hidráulica cubrían buena parte del suministro renovable,
con una cuota de mercado del 57% y el 37%, respectivamente, en 2016 se observa un reparto más equilibrado entre las diferentes tecnologías de transformación. La biomasa continúa dominando el mercado renovable, aunque la incorporación y expansión de nuevas tecnologías como la eólica o la solar termoeléctrica han supuesto una pérdida significativa de la cuota de mercado de la primera de alrededor de 19 puntos porcentuales. También la cuota de mercado de la energía hidráulica ha retrocedido desde el año en 19 puntos porcentuales pese al buen año hidráulico registrado en 2016.

Por su parte, la energía eólica se ha convertido en la segunda tecnología en cuanto a participación en los consumos primarios de recursos renovables, pasando de representar cerca del 6% en el año 2000 al 24% en el año 2016. También las tecnologías solares han incrementado significativamente su presencia en el balance: la solar térmica ha evolucionado desde un 0,4% en 2000 hasta el 1,7% de los consumos primarios renovables en 2016, multiplicando en cerca cuatro veces su participación en la cesta energética renovable; la fotovoltaica, con muy poca presencia a principios del siglo, representó en 2016 el 3,9% de la energía primaria renovable y la tecnología solar termoeléctrica, que en el año 2000 no contaba con instalaciones en funcionamiento, supone ya el 12,3% de las aportaciones renovables a la demanda de primaria energía. Finalmente, la geotermia, aún con los avances registrados durante estos últimos años, representa tan solo el 0,1% de la demanda primaria de energías renovables.

8.3.2. Progresos registrados en el fomento y la utilización de la energía procedente de fuentes renovables

La Directiva 2009/28/CE, de 23 de abril de 2009, relativa al fomento del uso de energía procedente
de fuentes renovables, establece para cada país de la UE los objetivos nacionales en materia de energías renovables al año 2020. De acuerdo con lo establecido en la misma, el 6 de julio de 2010 fue remitido a la Comisión Europea el Plan de Acción Nacional de Energías Renovables de España (PANER) 2011-2020, de fecha 30 de junio de 2010. Dicho plan fue actualizado y sustituido posteriormente por un nuevo PANER de fecha 20 de diciembre de 2011, que fue remitido a la Comisión Europea el 5 de enero de 2012.

Con objeto de facilitar el seguimiento de la Directiva, EUROSTAT, en colaboración con los Estados miembros a través de su Energy Statistics Working Group (ESWG), ha desarrollado la herramienta informática armonizada SHARES (Short Assessment of Renewable Energy Sources), que permite determinar la cuota de energías renovables sobre el consumo final bruto de energía de acuerdo con las definiciones establecidas en la Directiva.

La actualización del SHARES para el año 2015, Tabla 8.3, sitúa la cobertura de las energías renovables sobre el consumo final bruto en el 16,2%, con unas cuotas en calefacción y refrigeración del 16,8%, en electricidad del 36,9% y en transporte del 1,7%.

Como puede observarse en el Figura 8.61, España prácticamente ha duplicado en los últimos diez años su cuota de energías renovables en el consumo final bruto de energía, apuntando una tendencia que, de continuar en los próximos años, permitiría cumplir con el objetivo establecido por la Directiva 2009/28/CE para España en lo que a participación de las fuentes renovables en el consumo final bruto de energía se refiere.

Pese al hecho de que hasta enero de 2016 no ha existido un sistema de verificación de la sostenibilidad de los biocarburantes, la contribución de las fuentes renovables en el periodo 2011-2015 supera la trayectoria mínima indicativa establecida por la Directiva 2009/28/CE. La cuota de contribución de fuentes renovables del año 2015 habría que incrementarla, si se contabilizaran los 1.023 ktep de biocarburantes consumidos en ese año, en 1,1 puntos porcentuales, lo que la situaría en un 17,3% la participación de las energías renovables en el consumo final bruto de energía.

8.3.3. Otros aspectos relevantes

Con respecto a la incorporación de nueva potencia renovable al parque generador eléctrico, el 14 de enero de 2016 se convocó la subasta para la asignación de régimen retributivo específico a instalaciones de producción de energía eléctrica a partir de tecnología eólica y biomasa. La subasta se resolvió el 18 de enero con la adjudicación de una potencia de 200 MW para centrales de biomasa y 500 MW para plantas de energía eólica. Posteriormente, el 17 de mayo de 2017 y el 26 de julio de 2017 se convocaron sendas subastas de asignación del régimen retributivo específico de producción eléctrica a partir de fuentes de energías renovables. Como
FIGURA 8.61. EVOLUCIÓN DE LA CUOTA DE ENERGÍAS RENOVABLES SOBRE EL CONSUMO FINAL BRUTO DE ENERGÍA

FIGURA 8.62. EVOLUCIÓN DE LA CUOTA DE ENERGÍAS RENOVABLES SOBRE LA DEMANDA DE CALEFACCIÓN Y REFRIGERACIÓN

Datos provisionales
FUENTE: MINETAD, IDAE, COMISIÓN EUROPEA-EUROSTAT
resultado, se asignaron 3.000 MW en la subasta de mayo, de los cuáles, 2.979 MW han sido adjudicados a instalaciones eólicas, 1 MW a instalaciones fotovoltaicas y 20 MW al resto de tecnologías. En julio se asignaron 5.037 MW de potencia renovable, correspondiendo 3.909 MW a instalaciones fotovoltaicas y 1.128 MW a plantas eólicas.

En lo que respecta a los biocarburantes, el 1 de enero de 2016 finalizó el periodo de carencia para la verificación de la sostenibilidad de los biocarburantes, entrando en aplicación el periodo transitorio para la verificación de la sostenibilidad. En este marco la Comisión Nacional de los Mercados y la Competencia ha publicado en el mes de abril la Circular 1/2016, de 30 de marzo, que establece las normas de organización y funcionamiento del mecanismo de certificación de biocarburantes y otros combustibles renovables vendidos o consumidos con fines de transporte, y que concreta determinados aspectos de carácter operativo del sistema nacional de verificación de la sostenibilidad de los biocarburantes.

8.4. DESARROLLO NORMATIVO

A continuación se muestra una selección de las disposiciones normativas más relevantes aprobadas en el año 2016 en las áreas de la eficiencia energética, cogeneración y energías renovables.

8.4.1. Producción Eléctrica con Renovables, Cogeneración y Residuos

- Resolución de 18 de enero de 2016, de la Dirección General de Política Energética y Mi-
nas, por la que se resuelve la subasta para la asignación del régimen retributivo específico a nuevas instalaciones de producción de energía eléctrica a partir de biomasa en el sistema eléctrico peninsular y para instalaciones de tecnología eólica, al amparo de lo dispuesto en el Real Decreto 947/2015, de 16 de octubre.

El Real Decreto 413/2014, de 6 de junio, por el que se regula la actividad de producción de energía eléctrica a partir de fuentes de energía renovables, cogeneración y residuos, establece que el otorgamiento de régimen retributivo específico se realizará mediante el procedimiento de concurrencia competitiva. En base a esto, se estableció por una parte, la convocatoria para la asignación del régimen retributivo específico de los cupos de potencia para cada tecnología. Por otra parte, se aprobó la Orden IET/2212/2015, de 23 de octubre, por la que se regula el procedimiento de asignación del régimen retributivo específico en la convocatoria para nuevas instalaciones de producción eléctrica a partir de biomasa situadas en el sistema eléctrico peninsular y para instalaciones de tecnología eólica.

Mediante la citada Orden se establece que los productos a subastar serán la potencia (kW) con derecho a la percepción del régimen retributivo específico de las instalaciones, obteniéndose como resultado un porcentaje de reducción del valor estándar de la inversión inicial de la instalación tipo de referencia, con el que se obtendrá el valor estándar de la inversión inicial de la instalación tipo, lo que, junto al resto de parámetros retributivos de la instalación tipo, dará lugar a la retribución a la inversión de la instalación tipo.

De acuerdo con lo anterior, el 14 de enero de 2016 se celebró la subasta para determinar el porcentaje de reducción del valor estándar de la inversión inicial de la instalación tipo de referencia para nuevas instalaciones de producción eléctrica a partir de biomasa situadas en el sistema eléctrico peninsular y para instalaciones de tecnología eólica.

Según esto, mediante la presente Resolución se procede a la aprobación de los siguientes porcentajes de reducción del valor estándar de la inversión inicial de la instalación tipo de referencia resultante de la subasta para cada una de las tecnologías:

<table>
<thead>
<tr>
<th>Biomasa –ITR-0101–</th>
<th>% de reducción del valor estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eólica –ITR-0102–</td>
<td>100%</td>
</tr>
</tbody>
</table>

8.4.2. Eficiencia Energética

I. Ámbito General:

* Real Decreto 56/2016, de 12 de febrero, por el que se transpone la Directiva 2012/27/UE del Parlamento Europeo y del Consejo, de 25 de octubre de 2012, relativa a la eficiencia energética, en lo referente a auditorías energéticas, acreditación de proveedores de servicios y auditores energéticos y promoción de la eficiencia del suministro de energía.

Constituye el objeto de este real decreto, en vigor desde el 14 de febrero, el establecimiento de un marco normativo que desarrolle e impulse actuaciones dirigidas a la mejora de la eficiencia energética de una organización, a la promoción del
ahorro energético y a la reducción de las emisiones de gases de efecto invernadero, que permitan contribuir a los objetivos comunitarios en materia de eficiencia energética.

La realización de **auditorías energéticas** será de obligado cumplimiento para todas las empresas que tengan la consideración de «grandes empresas», entendiéndose por tales las que ocupen al menos a 250 personas o bien las que, aun sin cumplir dicho requisito, tengan un volumen de negocio superior a 50 M€ y, a la par, un balance general que exceda de 43 M€. Esta obligación se extiende a los grupos de sociedades, que, cumplan los referidos requisitos de gran empresa.

Las grandes empresas o grupos de sociedades afectados deberán someterse a una auditoría cada 4 años a partir de la fecha de la auditoría anterior, que cubra, al menos, el 85% del consumo de energía final del conjunto de las instalaciones ubicadas en el territorio nacional que formen parte de las actividades que dichas empresas y grupos gestionan. Asimismo, las empresas que, a partir del 14 de febrero de 2016, cumplan con la condición de «gran empresa» durante al menos dos ejercicios consecutivos, deberán someterse a la primera auditoría en el plazo de nueve meses, siempre que no hayan realizado previamente una en un plazo inferior a 4 años.

Estas auditorías deberán ser realizadas por auditores energéticos debidamente cualificados. Igualmente, podrán ser realizadas por técnicos cualificados de las empresas donde tenga lugar la auditoría, siempre que no tengan relación directa con las actividades auditadas y pertenezcan a un departamento de control interno de dicha empresa. La realización de las auditorías deberá ser verificada por un sistema de inspección independiente a cargo del órgano competente en materia de eficiencia energética.

Por otra parte, se establece que cada 5 años el Ministerio de Energía, Turismo y Agenda Digital llevará a cabo y notificará a la Comisión Europea, una evaluación completa del potencial de uso de la **cogeneración de alta eficiencia** y de los **sistemas urbanos de calefacción y refrigeración eficientes**. Para ello, se deberá tener en cuenta los análisis de los potenciales nacionales para la cogeneración de alta eficiencia llevados a cabo en virtud de la Directiva 2004/8/CE.

Finalmente, se incorpora la definición de **edificio de consumo de energía casi nulo**, entendiéndose por aquél, el edificio con un nivel de eficiencia energética muy alto en conformidad con la Directiva 2010/31/UE. La cantidad casi nula o muy baja de energía requerida debería estar cubierta, en amplia medida, por energía procedente de fuentes renovables.

- **Orden IET/359/2016, de 17 de marzo, por la que se establecen las obligaciones de aportación al Fondo Nacional de Eficiencia Energética en el año 2016.**

La Directiva 2012/27/UE establece la obligación de justificar una cantidad de ahorro de energía para 2020. Según esto, España ha establecido un objetivo de 15.979 ktep de ahorro acumulado para el periodo 2014-2020. Por otra parte, la citada Directiva determina que cada Estado miembro es-
EFICIENCIA ENERGETICA, COGENERACIÓN Y ENERGÍAS RENOVABLES

Mediante el presente real decreto, se garantiza la continuidad del Plan Estatal 2013-2016 durante un año adicional. Las ayudas concedidas durante la prórroga se regirán por lo dispuesto en el Real Decreto 233/2013, de 5 de abril.

III. Transporte:

• Plan de Impulso a la Movilidad con Vehículos de Energías Alternativas (MOVEA)

El Plan de Impulso a la Movilidad con Vehículos de Energías Alternativas (MOVEA), es una medida que forma parte de la Estrategia de Impulso del Vehículo con Energías Alternativas (VEA) en España 2014-2020, diseñada y puesta en marcha por el Ministerio de Energía, Turismo y Agenda Digital, en colaboración con otras entidades y Ministerios, con el objeto de unificar los distintos programas y planes dirigidos a apoyar la adquisición de los vehículos más eficientes.

El Plan MOVEA cuenta con una dotación presupuestaria de 16,6 M€ en 2016, dirigida a incentivar la adquisición de vehículos de energías alternativas, así como la implantación de puntos de recarga de vehículos eléctricos en zonas de acceso público. Para ello se contempla la concesión directa de subvenciones, cuya regulación se efectúa mediante el Real Decreto 1078/2015, de 27 de noviembre.

II. Edificios:

• Real Decreto 637/2016, de 9 de diciembre, por el que se prorroga el Plan Estatal de fomento del alquiler de viviendas, la rehabilitación edificatoria, y la regeneración y renovación urbanas 2013-2016 regulado por el Real Decreto 233/2013, de 5 de abril.

Mediante el presente real decreto, se garantiza la continuidad del Plan Estatal 2013-2016 durante un año adicional. Las ayudas concedidas durante la prórroga se regirán por lo dispuesto en el Real Decreto 233/2013, de 5 de abril.

Con tal fin, el Real Decreto-ley 8/2014, de 4 de julio, de aprobación de medidas urgentes para el crecimiento, la competitividad y eficiencia, aprobado como Ley 18/2014, de 15 de octubre, establece un sistema nacional de obligaciones de eficiencia energética en virtud del cual se asignará a los sujetos obligados una cuota anual de ahorro energético, denominada obligaciones de ahorro. Para hacer efectivo el cumplimiento de estas obligaciones, los sujetos obligados deberán realizar una contribución financiera anual al Fondo Nacional de Eficiencia Energética. La Ley 18/2014 establece el procedimiento de gestión de dicho Fondo así como la forma en que será dotado económicamente.

En consecuencia, la presente orden procede al establecimiento de la obligación de ahorro para el año 2016, valorado en 262 ktep, de los porcentajes de reparto de esta obligación entre los sujetos obligados, así como de las correspondientes cuotas u obligaciones de ahorro y su equivalencia económica, fijado en 2015 en 0,789728 M€ por ktep ahorrado.
En el caso de adquisición de vehículos, las ayudas se destinarán a la adquisición directa o a través de arrendamiento financiero (leasing) o alquiler a largo plazo (renting) de vehículos nuevos. También se aplicarán a la adquisición de vehículos eléctricos de hasta seis meses de antigüedad.

El vehículo susceptible de ayuda deberá estar matriculado en España y pertenecer a alguna de las siguientes categorías: Turismos M1; Autobuses o autocares (M2, M3); Vehículos de motor concebidos y fabricados principalmente para el transporte de mercancías cuya masa máxima autorizada (MMTA) no supere las 3,5 toneladas; Furgones o camiones (N1, N2, N3); Cuadriciclos (L6e, L7e); Motocicletas L3e, L4e, L5e; y Bicicletas de pedaleo asistido por motor eléctrico nuevas. El importe total de las ayudas se distribuirá según el tipo de vehículo y tecnología de propulsión:

<table>
<thead>
<tr>
<th>Tecnología de propulsión</th>
<th>Importe Total de las ayudas según tipo de vehículos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehículos eléctricos</td>
<td>Turismos (M1), cuadriciclos ligeros (L6e) y pesados (L7e): 4,5 M€</td>
</tr>
<tr>
<td></td>
<td>Autobuses o autocares (M2, M3), furgonetas, furgones, camiones (N4, N2, N3): 3,8 M€</td>
</tr>
<tr>
<td></td>
<td>Motocicletas (L3e, L4e, L5e): 0,3 M€</td>
</tr>
<tr>
<td></td>
<td>Bicicletas de pedaleo asistido por motor eléctrico: 0,2 M€.</td>
</tr>
<tr>
<td>Vehículos propulsados por Gas Natural</td>
<td>0,2 M€.</td>
</tr>
<tr>
<td>Vehículos propulsados por GLP</td>
<td>1,3 M€.</td>
</tr>
<tr>
<td>Instalación de puntos de recarga</td>
<td>Semirrápida: 1 M€</td>
</tr>
<tr>
<td></td>
<td>Rápida: 3,5 M€.</td>
</tr>
</tbody>
</table>

Podrán ser beneficiarios de las ayudas, entre otros, las personas físicas, autónomos, empresas privadas, Entidades Locales y Comunidades Autónomas. En el caso de los vehículos de categorías M2, N2, M3 y N3 de antigüedad superior a 7 años será obligatorio el achatarramiento. En el caso de los vehículos de categorías M1 y N4 se incentiva el achatarramiento con 750 euros, sin ser obligatorio.

El presente plan requiere a los fabricantes e importadores, cuyos puntos de venta deseen adherirse al Plan MOVEA, que incluyan un incentivo complementario consistente en la aplicación en la factura de un descuento mínimo de 1.000 euros por vehículo, realizado por el fabricante/importador o punto de venta del vehículo adquirido de las categorías M y N, salvo los propulsados por motor eléctrico. En el caso de los vehículos eléctricos, para que un punto de venta pueda adherirse al programa, además será necesario que se comprometa a facilitar, a los clientes que adquieran este tipo de vehículos y que se beneficien de la subvención, la instalación de un punto de carga vinculado, asumiendo hasta un coste máximo de 1.000 euros por vehículo para las categorías M y N, y de 150 euros por vehículo para los cuadriciclos de las categorías L6e y L7e.

La cuantía de las ayudas varía dependiendo del tipo de vehículo a adquirir y de la tecnología de propulsión:
Las subvenciones previstas son incompatibles con cualquier otra subvención, ayuda, ingreso o recurso otorgada por la Administración General del Estado para la misma finalidad.

Las ayudas podrán solicitarse en el periodo comprendido entre el 1 de enero y el 15 de octubre de 2016. Si a fecha 1 de mayo de 2016 no se hubiesen comprometido las cuantías previstas para cada categoría, los restantes podrán ser reasignados por el Ministerio de Energía, Turismo y Agenda Digital para cualquier categoría de vehículo eléctrico, previo informe a la Comisión Delegada del Gobierno para Asuntos Económicos.

- **Marco de Acción Nacional Español de Energías Alternativas en el Transporte.**

La Directiva 2014/94/UE del Parlamento Europeo y del Consejo, de 22 de octubre de 2014, relativa

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Tipo</th>
<th>Ayuda Estatal (€)</th>
<th>Ayuda concesionario (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ayuda base</td>
<td>Suplemento-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>achatarramiento</td>
</tr>
<tr>
<td>M1</td>
<td>GLP o bifuel</td>
<td>1.100 € para vehículos de precio < 10.000 €. 2.500 € para vehículos de precio < 25.000 €. 2.700 € si autonomía entre 15 y 40 km 3.700 € si autonomía entre 40 y 90 km. 5.500 € si autonomía > 90 km.</td>
<td>750 €</td>
</tr>
<tr>
<td></td>
<td>GN o bifuel</td>
<td>3.000 € para vehículos de precio < 25.000 €. Para vehículos de precio < 32.000 €. 3.700 € si autonomía entre 15 y 40 km.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHEV, REEV, BEV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>GLP o bifuel</td>
<td>2.000 € para vehículos con MMTA < 2.500 kg 3.000 € para vehículos con MMTA ≥ 2.500 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GN o bifuel</td>
<td>2.500 € para vehículos con MMTA < 2.500 kg 5.500 € para vehículos con MMTA ≥ 2.500 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHEV, REEV, BEV</td>
<td>8.000 € si autonomía > 60 km.</td>
<td></td>
</tr>
<tr>
<td>M2, N2</td>
<td>GLP, GN o bifuel</td>
<td>10.000 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHEV, REEV, BEV</td>
<td>8.000 € si autonomía > 60 km.</td>
<td></td>
</tr>
<tr>
<td>M3, N3</td>
<td>GLP, GN o bifuel</td>
<td>10.000 € para vehículos con MMTA <18.000 kg. 20.000 € para vehículos con MMTA ≥18.000 kg.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHEV, REEV, BEV</td>
<td>20.000 € si autonomía > 60 km.</td>
<td></td>
</tr>
<tr>
<td>L6e, L7e</td>
<td>BEV</td>
<td>1.950 €, para cuadriciclos L6e 2.350 €, para cuadriciclos L7e</td>
<td></td>
</tr>
<tr>
<td>L3e, L4e,</td>
<td>GLP, GN o bifuel</td>
<td>1.500 € si potencia ³3 kWh y < 4,5 kWh, con autonomía > 70 km, y precio < 8.000 €. 2.000 € si potencia ≥4,5 kWh, con autonomía eléctrica ≥70 km, y cuyo < 8.000 €.</td>
<td></td>
</tr>
<tr>
<td>L5e</td>
<td>PHEV, REEV, BEV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bicicletas eléctricas</td>
<td></td>
<td>200 €</td>
<td></td>
</tr>
<tr>
<td>Infraestructura recarga VE</td>
<td>Semirrápida</td>
<td>2.000 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rápida</td>
<td>15.000 €</td>
<td></td>
</tr>
</tbody>
</table>

La Directiva 2014/94/UE del Parlamento Europeo y del Consejo, de 22 de octubre de 2014, relativa
a la implantación de una infraestructura para los combustibles alternativos establece en su artículo 3 que cada Estado miembro adoptará un marco de acción nacional para el desarrollo del mercado respecto de los combustibles alternativos en el sector del transporte y la implantación de la infraestructura correspondiente.

El Marco de Acción Nacional de Energías Alternativas en el Transporte (MAN), aprobado por Consejo de Ministros del 9 de diciembre de 2016, tiene como objetivo aumentar la sostenibilidad del sistema eléctrico y gasista, mejorar la balanza comercial al reducir las importaciones de petróleo y enfocar a la industria de automoción, naval y de equipamiento industrial hacia tecnologías de futuro. El MAN, en conformidad con la Directiva 2014/94/UE, establece unos objetivos nacionales para facilitar el despliegue de la infraestructura, para cuyo cumplimiento contempla un amplio paquete de medidas.

Las medidas, básicamente, se articulan alrededor de 3 ejes prioritarios (mercado, infraestructura e industrialización) engarzados a través de un cuarto eje —marco regulatorio estable que dé continuidad a las acciones emprendidas, permitiendo ofrecer garantías al mercado, a los inversores en infraestructuras y a los impulsores de la industrialización. El transporte por carretera es el destinatario del mayor número de actuaciones (38).

14 En el marco del proyecto CIRVE (Corredores Ibéricos de Infraestructura de Recarga Rápida de Vehículos Eléctricos), se prevé la instalación en España de 25 nuevos puntos piloto de recarga rápida y la adaptación de 15 puntos existentes en puntos estratégicos de los corredores ibéricos. Además de ello se prevén otros posibles nuevos puntos en entornos urbanos/periurbanos.

15 Identificación de puertos de interés general donde será posible suministrar GNL al menos mediante camiones cisterna.
que pueden repostar con cada tipo de combustible comercializado o recargarse en puntos de recarga. Esa información figurará en los manuales de los vehículos, en los puntos de repostaje y de recarga, y en los concesionarios de vehículos.

Además de ello, en las estaciones de servicio, se deberá informar sobre precios unitarios de los combustibles, en particular para el gas natural y el hidrógeno, tanto en sus unidades habituales de medida como en unidades energéticas, de modo que se permita la comparación con los precios de los combustibles tradicionales. Esta medida se acompaña de la obligación a los titulares de los puntos de repostaje o recarga accesibles al público de comunicar al Ministerio de Energía, Turismo y Agenda Digital sobre su ubicación geográfica y los precios de sus combustibles.

Mediante la aprobación conjunta de este Real Decreto y del MAN, se produce la transposición de la Directiva 2014/94/UE al ordenamiento jurídico español.

• **Programa de ayudas para actuaciones de eficiencia energética en el sector ferroviario.**

El objeto del presente programa de ayudas es incentivar y promover la realización de actuaciones en el sector ferroviario.
sector ferroviario que reduzcan las emisiones de dióxido de carbono, mediante la ejecución de proyectos de ahorro y eficiencia energética, contribuyendo a alcanzar los objetivos de reducción del consumo de energía final que fija la Directiva 2012/27/UE.

Con tal fin, el Ministerio de Energía, Turismo y Adenda Digital, a través del Instituto para la Diversificación y Ahorro de la Energía (IDAE), pone en marcha un programa específico de ayudas y financiación dotado inicialmente con un presupuesto máximo de 13 M€. La regulación de la concesión de estas ayudas se regirá por las bases aprobadas por Resolución de 30 de noviembre de 2015, del Secretario de Estado de Energía y Presidente del IDAE, por la que se publica la Resolución de 27 de octubre de 2015 por la que se aprueban las bases y la convocatoria del programa de ayudas para actuaciones de eficiencia energética en el sector ferroviario.

Las ayudas contempladas por este Programa estarán cofinanciadas con fondos FEDER por lo que se aplicará el Reglamento 1303/2013 y deberán responder a los criterios de elegibilidad aplicables al Programa Operativo FEDER de Crecimiento Sostenible 2014-2020.

Serán actuaciones elegibles, susceptibles de ayudas, aquellas que correspondan a las tipologías de medidas señaladas a continuación, así como, en caso de cofinanciación de fondos FEDER, a los criterios de elegibilidad aplicables al Programa Operativo FEDER de Crecimiento Sostenible 2014-2020.

- Estrategias de ahorro energético en la operación del tráfico ferroviario (M2).
- Mejora de la eficiencia energética en edificios ferroviarios existentes (M3).
- Mejora de la eficiencia energética en alumbrado exterior y señalización (M4).
- Mejora de la eficiencia energética en instalaciones ferroviarias (M5).

Solo se considerarán elegibles las inversiones o costes que sean necesarias para conseguir una mejora de la eficiencia energética, y que se realicen en la adquisición de bienes o de servicios por parte del solicitante y/o beneficiario de la ayuda que puedan justificarse mediante factura y justificante de pago al proveedor. A estos efectos se considerarán partidas elegibles los siguientes conceptos: elaboración de los planes, auditorías o estudios necesarios para la implantación de la medida; y equipos, servicios, aplicaciones informáticas o materiales de promoción vinculados a la actuación.

Las actuaciones deberán cumplir con una serie de requisitos según la tipología de la que se trate.

Las ayudas concedidas responden a las siguientes modalidades: entrega dineraria sin contraprestación (hasta un máximo del 30% de la inversión elegible); y préstamo reembolsable (hasta el 100% de la inversión elegible, con un máximo de 4 M€ y un mínimo 300.000 €, al 2% de interés y un plazo máximo de vigencia 10 años).

Podrán ser beneficiarios de las ayudas de este Programa: las empresas ferroviarias titulares de los activos donde se realicen las actuaciones ob-
La regulación de la concesión de estas ayudas se regirá por las bases aprobadas por Resolución de 18 de diciembre de 2015, del Secretario de Estado de Energía y Presidente del IDAE, por la que se publica la Resolución de 25 de noviembre de 2015 por la que se aprueban las bases y la convocatoria del programa de ayudas para actuaciones de eficiencia energética en desaladoras. Dichas ayudas estarán cofinanciadas con fondos FEDER por lo que se aplicará el Reglamen-
además alguno de los siguientes requisitos: Empresarios o entidades, personas físicas o jurídicas de naturaleza pública o privada, que sean propietarios o concesionarias o explotadoras de plantas desaladoras; o empresas de servicios energéticos.

El periodo de vigencia de este programa, inicialmente previsto desde el 29 de diciembre de 2015 hasta el 28 de diciembre de 2016, ha sido ampliado por un año, mediante la Resolución de 13 de diciembre de 2016, del Instituto para la Diversificación y Ahorro de la Energía, siempre y cuando no se agote el presupuesto disponible.

8.4.3. Energías Renovables

- **Circular 1/2016, de 30 de marzo, de la Comisión Nacional de los Mercados y la Competencia, por la que se regula la gestión del mecanismo de fomento del uso de biocarburantes y otros combustibles renovables con fines de transporte.**

Esta Circular, en vigor desde el 9 de abril de 2016, tiene por objeto establecer las normas de organización y funcionamiento del mecanismo de certificación de biocarburantes y otros combustibles renovables vendidos o consumidos con fines de transporte y concretar determinados aspectos de carácter operativo del sistema nacional de verificación de la sostenibilidad de los biocarburantes.

En concreto, se establecen los procedimientos, normas y reglas para la solicitud de la constitución de Cuentas de Certificación, para la solicitud de expedición de Certificados de biocarburantes
El presente real decreto tiene por objeto establecer las bases reguladoras para la concesión, en régimen de concurrencia competitiva, de subvenciones para el apoyo financiero a la cooperación para planteamientos conjuntos con respecto a proyectos medioambientales y prácticas medioambientales en curso, *orientados a la mejora de la eficiencia energética mediante el uso de energías renovables.*

Las ayudas reguladas se encuentran enmarcadas en el *Programa Nacional de Desarrollo Rural,* financiado por el Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA) y el Fondo Europeo Agrícola de Desarrollo Rural (FEADER).

Para obtener la condición de *beneficiarios* se deberá formar una agrupación integrada al menos por dos de las siguientes figuras, una entidad asociativa prioritaria, una pyme supra autonómica u otra persona física o jurídica, siendo imprescindible la participación de una entidad asociativa prioritaria o una pyme supra autonómica agroalimentaria. Los miembros de dicha agrupación deberán realizar conjuntamente un proyecto de cooperación, cuyo objetivo sea contribuir al uso más eficiente de la energía y a la utilización de energías renovables en la transformación de los productos agroalimentarios.

Las ayudas podrán alcanzar, como máximo, el 100% de los gastos subvencionables, con un límite de ayuda por proyecto de cooperación de 60.000 euros. El importe de la subvención, podrá alcanzar por beneficiario un máximo de 200.000 € durante cualquier periodo de tres ejercicios fiscales, al enmarcharse estas ayudas en el régimen de minimis.
9. ENERGÍA Y MEDIO AMBIENTE
En el año 2016 ha continuado la reactivación económica iniciada en España en 2015, habiéndose registrado un crecimiento del 3,2% de la economía española. Se ha producido un incremento del 1,5% del consumo energético de energía de uso final en 2016, continuando así la tendencia iniciada en 2015, mientras que el consumo de energía primaria se incrementó un 0,2% en 2016, siendo un avance inferior al del año anterior. El aspecto más significativo en 2016 ha sido el crecimiento por segundo año consecutivo de la demanda de energía eléctrica, un 0,8% respecto a 2015, mientras que la generación neta ha disminuido un 2%, con un crecimiento del 27% en la producción hidráulica y del 2,3% en la producción nuclear, y un descenso del 29% en la producción en centrales de carbón y del 0,8% en la generación con energía eólica.

En el campo internacional, en lo concerniente al ámbito del cambio climático, del 7 al 18 de noviembre de 2016, como se ha recogido en el capítulo 1 de este libro, se ha celebrado en Marrakech (Marruecos) la vigésimo segunda sesión de la Conferencia de las Partes de la Convención Marco de NN.UU. sobre el Cambio Climático (COP-22), así como la duodécima sesión de la Conferencia de las Partes en calidad de Reunión de las Partes del Protocolo de Kioto (COP-MOP12). A nivel europeo, se ha seguido trabajando en la elaboración de los instrumentos para poner en práctica el nuevo sistema de comercio de derechos de emisión a través de la propuesta de Directiva del Parlamento Europeo y del Consejo por la que se modifica la Directiva 2003/87/CE para intensificar las reducciones rentables de emisiones y facilitar las inversiones en tecnologías hipocarbónicas, que será de aplicación para el periodo 2021-2030.

Del mismo modo que en ediciones anteriores, en este apartado se reseñan en primer lugar los hechos más relevantes acaecidos en el ámbito de la energía y medio ambiente en la esfera internacional, para, seguidamente, revisar las actuaciones de la Unión Europea y finalizar con las actuaciones nacionales más destacadas.

9.1. ÁMBITO INTERNACIONAL

Convención Marco del Cambio Climático. Protocolo de Kioto. La COP-21 de París celebrada del 30 de noviembre al 11 de diciembre de 2015. La COP-22 de Marrakech (Marruecos) celebrada del 7 al 18 de noviembre de 2016

La Convención Marco del Cambio Climático de las Naciones Unidas adoptó, a finales del año 1997, el Protocolo de Kioto por el cual los países industrializados y de economías en transición se comprometieron a limitar las emisiones de los seis gases de efecto invernadero entre 1990 y el periodo 2008-2012. Entre los compromisos más relevantes se pueden citar los siguientes: la Unión Europea -8%, Estados Unidos -7%, Japón -6%, Rusia 0%, Australia +8%, etc.

En la Conferencia de las Partes de la Convención Marco de NN.UU. sobre el Cambio Climático (COP21) celebrada en París en diciembre de 2015, 195 países firmaron el primer acuerdo vinculante mundial sobre el clima. Este acuerdo establece un plan de acción mundial que pone el límite del calentamiento global muy por debajo de 2 °C.
El Acuerdo de París, liderado por la Unión Europea, es un acuerdo ambicioso en tanto en cuanto tiene como objetivo fundamental evitar que el incremento de la temperatura media global supere los 2°C respecto a los niveles preindustriales. Por otro lado, se aborda la necesidad de adaptarse a los efectos adversos del cambio climático, así como reconocer las necesidades de los países más vulnerables.

En cuanto a la financiación, se adoptan las bases para una transición hacia modelos bajos en emisiones y resilientes al cambio climático. Por primera vez se valoran los esfuerzos voluntarios de los países en desarrollo.

Se ha acordado hacer un seguimiento cada cinco años de las acciones climáticas a través de un sistema transparente y con un balance global, que cuente con la información de las emisiones de todos los países.

El Acuerdo de París quedó abierto a la firma durante un año el 22 de abril de 2016. Para su entrada en vigor se necesitaban al menos 55 países firmantes que representasen al menos el 55% de las emisiones mundiales de gases de efecto invernadero. El 5 de octubre de 2016 la UE ratificó formalmente el Acuerdo de París, lo que permitió que entrara en vigor el 4 de noviembre de 2016. No obstante, a efectos prácticos e institucionales será en 2020 cuando entre realmente en funcionamiento.

Del 7 al 18 de noviembre de 2016 se celebró en Marrakech (Marruecos) la vigésima segunda (22ª) sesión de la Conferencia de las Partes de la Conven- ción Marco de NN.UU. sobre el Cambio Climático (COP22), así como la duodécima (10ª) sesión de la Conferencia de las Partes en calidad de Reunión de las Partes del Protocolo de Kioto (COP-MOP12).

En la COP22 se han sentado las bases para la plena implementación del Acuerdo de París y para la puesta en marcha de todas las iniciativas que se lanzaron durante la COP21, de manera que se sigan movilizando esfuerzos a nivel global para la lucha contra el cambio climático.

De las reuniones celebradas en Marrakech emergieron dos decisiones significativas: una sobre financiación a largo plazo y otra sobre la ruta de trabajo para las Partes que ratificaron (o lo harán en un futuro) en el Acuerdo de París (CMA1).

Los elementos centrales del acuerdo de Marrakech son los siguientes:

- Avances en la implementación del Acuerdo de París

El Acuerdo de París entró en vigor el 4 de noviembre de 2016. En la COP22 se pudo celebrar la primera reunión de las Partes en calidad de reunión de las Partes del Acuerdo de París (CMA1), máximo órgano de decisión del Acuerdo.

En Marrakech se han elaborado las reglas del Acuerdo de París y se ha establecido un calendario claro y ambicioso para lograr su desarrollo, de forma que en el 2017 se hace una revisión sobre la situación de los trabajos realizados, y en el 2018 deberán estar listas todas las disposiciones para la implementación efectiva del Acuerdo.
En este apartado hay que destacar los siguientes logros:

– Avances en las discusiones de las **Contribuciones Determinadas a nivel Nacional** (NDCs, por sus siglas en inglés), donde los países pueden revisar y recalibrar al alza sus objetivos de reducción de emisiones en 2018 y comunican sus nuevos objetivos en 2020 o 2025, así como la puesta en marcha de políticas y medidas nacionales para alcanzar dichos objetivos.

– Establecimiento de un **ciclo de revisión previsto en el Acuerdo** en relación con los objetivos del mismo, donde se definan las líneas de trabajo a seguir, fuentes de información, modalidades y formas de actuación para garantizar su cumplimiento.

– Inicio del desarrollo del **Marco de Transparencia reforzado** para acciones y apoyo del Acuerdo de París, que se basará en tres elementos comunes a todos los países: información de las acciones de mitigación y adaptación emprendidas, evaluación y revisión técnica de la información, y valoración del progreso realizado a lo largo del tiempo.

– Discusiones acerca del **Comité encargado de facilitar la implementación y cumplimiento** creado en el Acuerdo de París, en concreto sobre las modalidades y procedimientos del mismo, su naturaleza, estructura y medidas que puede adoptar.

– Avances en el paquete de solidaridad para los países en desarrollo

Se incluyeron aspectos relacionados con las áreas de financiación, **fortalecimiento de capacidades**, y **desarrollo y transferencia de tecnología**, dando respuesta a las preocupaciones tanto de países desarrollados como de países en desarrollo.

En lo relativo a **financiación** cabe destacar el objetivo de movilización por parte de los países desarrollados de 100.000 millones de dólares anuales a partir de 2020, con su inclusión en la financiación a largo plazo, y se acuerda la necesidad de aumentar dichos fondos más allá de 2025.

Los países en desarrollo consiguieron en el final de la Cumbre de Marrakech que se mantenga el **Fondo de Adaptación**, un instrumento del Protocolo de Kioto para financiar proyectos concretos que les ayuden a reducir su vulnerabilidad a los impactos asociados al cambio climático. Las reglas de operatividad de dicho Fondo de Adaptación a partir del 2020 deberán quedar establecidas en el 2018.

En lo relativo al **fortalecimiento de capacidades**, se aprobó la puesta en marcha del Comité de París de Fortalecimiento de Capacidades, con la elección de sus miembros y la fijación de los términos de referencia.

En materia de **pérdidas y daños**, se ha revisado el Mecanismo Internacional de Varsovia para pérdidas y daños asociados al cambio climático, estableciendo un nuevo marco quinquenal con objeto de mejorar su efectividad.

En relación al **desarrollo y transferencia de tecnología** se acordó reforzar el Mecanismo Tecnológico de la Convención, mejorando sus sinergias
con el Comité Ejecutivo de Tecnología y el Centro y Red de Tecnología del Clima.

• Suscripción de la Declaración política de Marrakech

La COP22 concluyó con la firma de la «Declaración de Marrakech», que refleja el compromiso de todos los países para frenar el calentamiento global, avanzar en la lucha contra el cambio climático y contribuir a la consecución de un desarrollo sostenible. El documento asume que el planeta está calentándose a un ritmo alarmante, sin precedentes y de manera irreversible.

En la Declaración de Marrakech hace un llamamiento a incrementar el volumen, el flujo y el acceso a la financiación de los proyectos climáticos, así como a reforzar las capacidades y esfuerzos de los países desarrollados para responder a las necesidades de los países en vías de desarrollo.

• Lanzamiento de la Alianza de Marrakech por la Acción Climática Global

En el marco de la Agenda de Acción Global por el Clima se celebraron sesiones temáticas y como resultado de las mismas se estableció la Alianza de Marrakech por la Acción Climática Global, que pretende canalizar todas las iniciativas de los agentes no gubernamentales para la consecución de los compromisos acordados en la Cumbre de París (COP21).

• Avances sobre compromisos y acciones pre-2020

Para la evaluación de los resultados y la revisión técnica de las obligaciones de información de las Partes de la Convención, en Marrakech tuvieron lugar dos procesos: la valoración multilateral (para países desarrollados) y el intercambio facultativo de opiniones (para países en desarrollo), los cuales permitirán progresar en todas las áreas de lucha contra el cambio climático en el ámbito de la Convención.

Así mismo, se celebró el Diálogo Facultativo en materia de ambición para evaluar la implementación de las decisiones ya tomadas en el ámbito pre-2020, y dar continuidad al proceso iniciado en el 2011 tratando de identificar acciones adicionales para incrementar las reducciones de gases de efecto invernadero de aquí a 2020.

9.2. UNIÓN EUROPEA

9.2.1. Marco de actuación en materia de clima y energía hasta el año 2030

Sobre la base de los principios definidos en las Conclusiones del Consejo Europeo de marzo de 2014, el Consejo de la Unión Europea, de 23 y 24 de octubre de 2014, acordó el marco de actuación de la Unión Europea en materia de clima y energía hasta el año 2030.

En las conclusiones de este Consejo Europeo se fijaban los siguientes objetivos:

• Un objetivo vinculante para la UE, de reducir las emisiones de gases de efecto invernadero de la Unión por lo menos en un 40% para 2030 con respecto a los valores de 1990.

• Un objetivo vinculante a escala de la UE de que la cuota de energías renovables dentro del
consume total de energía de la UE en 2030 sea como mínimo del 27%.

- Un objetivo indicativo a escala UE consistente en que la eficiencia energética mejore al menos en un 27% en 2030 con respecto a las previsiones de consumo energético futuro sobre la base de los criterios actuales.

- Un objetivo de un 15% para las interconexiones eléctricas.

El 30 de noviembre de 2016, la Comisión Europea presentó el paquete «Energía Limpia para todos los europeos» (también llamado «paquete de invierno») para acelerar, tanto la transición hacia una energía limpia, como el crecimiento y la creación de empleo, manteniendo la competitividad de la Unión Europea. Las propuestas normativas, concretadas en reglamentos y directivas, y las medidas presentadas en el paquete pretenden acelerar, transformar y consolidar la transición de la economía de la UE hacia una energía limpia.

El paquete pretende crear un sistema energético europeo más sostenible, seguro y competitivo que permita compatibilizar el cumplimiento con los objetivos de cambio climático establecidos en el Acuerdo de París con la entrega de energía al consumidor a precios asequibles.

El paquete presentado persigue tres objetivos principales:

- Priorizar la eficiencia energética
- Lograr el liderazgo mundial en materia de energías renovables
- Ofrecer un trato justo a los consumidores

Las propuestas de la Comisión abarcan iniciativas legislativas relativas a:

- Mercado interior de electricidad.
- Normas de gobernanza y planificación de los objetivos de eficiencia energética y energías renovables.
- Cooperación entre reguladores nacionales de la energía.
- Eficiencia energética.
- Eficiencia energética en edificios. Fomento de uso de energías renovables, en particular en el transporte, calefacción y refrigeración, autoconsumo, y biocombustibles.
- Sostenibilidad de la bioenergía.
- Seguridad del abastecimiento, y preparación frente a riesgos en el sector de la electricidad.
- Ecoetiquetado y Ecodiseño.
- Estrategia para una movilidad conectada y automatizada.
- Innovación.

El nuevo sistema de Gobernanza, que se asienta en los llamados Planes Nacionales Integrados de Energía y Clima, es una parte muy importante del paquete. Dicho Plan debe reflejar los objetivos,
metas y trayectorias para cada una de las cinco dimensiones de la Unión de la Energía, que cada Estado miembro define para sí. Para ello, debe tener en cuenta la consecución de los objetivos marcados a nivel comunitario, así como recoger las políticas y medidas para alcanzar el cumplimiento de los compromisos.

Las cinco dimensiones de la Unión de la Energía:

- Descarbonización
- Eficiencia energética
- Seguridad energética
- Mercado interior de la energía
- Investigación, innovación y competitividad

9.2.2. Régimen de comercio de derechos de emisión (en adelante RCDE)

El **régimen de comercio de derechos de emisión de la UE** se inició en 2005 para promover la reducción de emisiones de gases de efecto invernadero de un modo rentable y económicamente eficiente. Este sistema limita el volumen de los gases de efecto invernadero que pueden emitir las industrias con gran consumo de energía, los productores de energía y las compañías aéreas. Los derechos de emisión están limitados en un nivel máximo establecido por la UE, y las empresas reciben o compran derechos individuales. El límite se reduce con el tiempo del tal modo que la cantidad de emisiones disminuye gradualmente.

Actualmente, y hasta el año 2020, se encuentra en vigor el **nuevo régimen del comercio de derechos de emisión de gases de efecto invernadero (2013-2020)**, según lo establecido en la Directiva de Régimen para el Comercio de Derechos de Emisión 2009/29/CE de 23 de abril de 2009, que ha modificado la Directiva 2003/87/CE. El nuevo régimen para el comercio de derechos de emisión de gases de efecto invernadero en su **fase 3 (2013-2020)** ha reforzado y revisado el RCDE de la fase anterior de forma que, a partir de 2013, tiene unas **reglas más armonizadas a nivel comunitario**. La implantación de la nueva Directiva RCDE UE ha requerido el desarrollo por parte de la Comisión de un conjunto de medidas, previo acuerdo de los Estados miembros, mediante el procedimiento de comitología.

A partir de la **fase 3 (2013-2020)** los **sectores con instalaciones fijas sujetas al RCDE UE**, según las emisiones que puedan medirse, notificarse y verificarse con un alto nivel de precisión, son las siguientes:

- **Dióxido de carbono** producido por:
 - Generación de electricidad y calor: centrales eléctricas y otras plantas de combustión con una potencia térmica nominal superior a 20 MW (excepto las instalaciones de incineración de residuos peligrosos o urbanos)
 - Sectores industriales de elevado consumo de energía, en particular: las refinerías de petróleo, los hornos de coque, la producción de hierro y acero, cemento sin pulverizar, vidrio, cal, ladrillos, productos de cerámica, pasta
de papel, cartón, ácidos y productos químicos orgánicos en bruto, y

- Aviación comercial.

- Óxido nitroso procedente de la producción de ácido nítrico, ácido adípico, ácido glicólico y glicoxal.

- Perflurocarbones derivados de la producción de aluminio.

La participación en el RCDE UE es obligatoria para las empresas de estos sectores, pero

- en algunos sectores solo se incluyen las fábricas que superan cierto tamaño

- pueden incluirse algunas instalaciones pequeñas si los gobiernos establecen medidas fiscales o de otra índole que reduzcan sus emisiones en una cantidad equivalente

- en el sector de aviación, hasta 2016 solo se aplica en vuelos entre aeropuertos dentro del Espacio Económico Europeo (EEE).

Los cambios principales en esta fase 3 del RCDE UE (2013-2020), muy distinta de las fases 1 y 2, son los siguientes:

- Se aplica un solo límite a las emisiones para toda la UE, en lugar del régimen anterior de límites nacionales.

- La subasta es el método determinado para la asignación de derechos, en lugar de la asignación gratuita, y se aplican normas armonizadas para la asignación de los derechos que se siguen dando de forma gratuita.

- Se incluyen más sectores y gases.

- Se han reservado 300 millones de derechos de reserva de nuevos entrantes para financiar el desarrollo de tecnología innovadoras en energías renovables y almacenamiento y captura de carbono (Programa NER 300).

Algunas de estas medidas se han completado a lo largo del año 2016. Se explican con más detalle a continuación:

Derechos de emisión y asignación gratuita

En el actual régimen del comercio de derechos de emisión de gases de efecto invernadero, para el periodo 2013-2020 existen tres tipologías de instalaciones según el grado de asignación gratuita que reciben. A los generadores de electricidad y las instalaciones de captura, transporte y almacenamiento geológico de carbono no se les otorgará asignación gratuita. Las instalaciones de sectores y subsectores expuestos a fugas de carbono tendrán el 100% de asignación gratuita. Finalmente, el resto de instalaciones tendrán un 80% de asignación gratuita en 2013, el porcentaje de gratuidad seguirá una senda lineal descendente hasta alcanzarse el 30% en 2020. No obstante, lo dicho respecto a los generadores eléctricos, la cogeneración de alta eficiencia y la calefacción urbana recibirán asignación gratuita respecto de la producción de calor y refrigeración.
La asignación gratuita de derechos de emisión a instalaciones industriales responde a la voluntad de atajar el riesgo potencial de fuga de carbono.

En julio de 2015 la Comisión Europea presentó una propuesta legislativa de revisión de la fase 4 del RCDE UE para el periodo 2021-2030, como un primer paso para alcanzar el objetivo de la UE de reducir al menos un 40% de las emisiones globales de gases de efecto invernadero dentro de la UE para el 2030.

Con objeto de alcanzar este objetivo, los sectores comprendidos en el RCDE UE han de reducir sus emisiones en un 43% respecto a las cifras de 2005, y el número total de derechos de emisión descenderá a un ritmo anual del 2,2% a partir de 2021, frente al actual de 1,74%.

La asignación gratuita de derechos va a seguir estando disponible para modernizar el sector energético en los estados miembros con menores ingresos.

Fuga de carbono

Se entiende por fuga de carbono la situación que puede producirse cuando, por motivos de costes derivados de las políticas climáticas, las empresas trasladan su producción a otros países con límites de emisión menos estrictos (fuera de la UE), lo que puede provocar un aumento en las emisiones globales. El riesgo de fuga de carbono puede ser mayor en ciertas industrias de alto consumo energético.

Dentro del RCDE UE, las instalaciones industriales que se consideran expuestas a un riesgo significativo...
La decisión de fuga de carbono reciben un trato especial para mantener su competitividad, y son las que figuran en las listas oficiales que tienen una validez de cinco años. Estas listas son aprobadas por decisión de la Comisión Europea previo acuerdo de los Estados miembros y el Parlamento Europeo (a través del llamado procedimiento de comitología) y tras una amplia consulta con las partes interesadas.

Según el artículo 10 bis de la Directiva 2003/87/CE del Parlamento Europeo y del Consejo, un sector se considera expuesto a un riesgo de fuga de carbono cuando:

- la suma de los costes adicionales directos e indirectos derivados de la aplicación de la Directiva aumentaría el coste de producción al menos un 5%, y cuando
- el conjunto de importaciones y exportaciones del sector con países no pertenecientes a la UE es superior al 10%.

También se considera expuesto un sector o subsector cuando se cumple alguna de las condiciones anteriores, en el caso de que el coste de producción aumente al menos un 30%, o si la intensidad del comercio con países no pertenecientes a la UE supera el 30%.

Esta estimación de costes tiene en cuenta el hecho de que los sectores que no están en la lista de fuga de carbono también son elegibles para recibir derechos gratuitos, aunque en menor medida que los de la lista.

El número de derechos gratuitos asignados a cada instalación se calcula mediante una fórmula que multiplica el volumen de producción (en toneladas) por el parámetro de referencia para el producto en cuestión (en emisiones por tonelada de producto). Para los sectores y subsectores incluidos en la lista de riesgo de fuga de carbono, la asignación gratuita se multiplica por un factor de 1 (100%), mientras que en el resto de sectores la asignación será multiplicada por una cifra más baja (80% en 2013, reduciéndose cada año hasta alcanzar el 30% en 2020).

La Decisión 2014/746/UE, de 27 de octubre de 2014, establece la lista de sectores y subsectores que se consideran expuestos a un riesgo significativo de fuga de carbono durante el período 2015-2019. Es la segunda lista elaborada en el periodo 2013-2020, de conformidad con la Directiva 2003/87/CE del Parlamento Europeo y del Consejo.

La Decisión 2014/746/UE ha sido aplicable a partir del 1 de enero de 2015, fecha en la que queda derogada la anterior Decisión 2010/2/UE, por la que se aprobó la primera lista.

La Directiva 2009/29/CE del Parlamento Europeo y del Consejo, de 23 de abril, que modifica la Directiva 2003/87/CE, permite en su artículo 10 bis que los Estados Miembros la posibilidad de compensar a los sectores con mayor consumo de electricidad por los aumentos del precio de esta energía que pueda ocasionar el RDCE UE a través de regímenes nacionales de ayudas estatales, así como realizar enmiendas de las listas aprobadas para la inclusión de nuevos sectores y subsectores tras la finalización de las evaluaciones cuantitativas y cualitativas de los datos, de acuerdo con los
criterios contemplados en el artículo 10 bis de la modificación de la Directiva de RCDE.

Dentro del Marco sobre clima y energía para 2030, los líderes de la UE han decidido mantener las medidas sobre fuga de carbono hasta 2030.

En España el Real Decreto 1055/2014, de 12 de diciembre, establece un mecanismo de compensación de costes de emisiones indirectas de gases de efecto invernadero para empresas de determinados sectores y subsectores industriales a los que se considera expuestos a un riesgo significativo de «fuga de carbono» y se aprueban las bases reguladoras de la concesión de las subvenciones para los ejercicios 2014 y 2015.

En la actualidad, a propuesta conjunta del Ministerio de Economía, Industria y Competitividad y el Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, se está elaborando un Proyecto de Real Decreto que modifica el Real Decreto 1055/2014 con objeto de mantener la continuidad del mecanismo de compensación de costes de emisiones indirectas de gases de efecto invernadero hasta el 31 de diciembre de 2020, en línea con el marco establecido por las Directrices comunitarias relativas a determinadas medidas de ayuda estatal en el contexto del régimen de comercio de derechos de emisión de gases de efecto invernadero establecidas para el periodo 2013-2020 ambos inclusive.

En lo relativo a las subvenciones previstas en el Real Decreto 1055/2014, este Proyecto de Real Decreto también tiene como objetivo introducir algunas modificaciones de carácter formal en regulación con las bases reguladoras, en beneficio de su operatividad. Se adopta la opción de pago de la ayuda al año siguiente del que se haya incurrido en los costes, realizando así un único trámite para la presentación de la solicitud de la ayuda y para la justificación de los costes por los que se percibe la subvención.

Subastas

Desde que comenzó la fase 3 del RCDE UE, la subasta a través del mercado primario es la modalidad por defecto de asignación de derechos. Eso implica que se subastarán más de la mitad de los derechos de emisión y que esta proporción aumentará de forma continua a lo largo del periodo de comercio.

El Reglamento (UE) 1031/2010 de la Comisión, de 12 de noviembre de 2010, especifica el calendario, la gestión y demás aspectos de la forma en que se deben llevar a cabo las subastas para garantizar un proceso abierto, transparente, armonizado y no discriminatorio. El modelo de subasta que se establece en el Reglamento está basado en una plataforma común de la que, bajo ciertas condiciones, pueden separarse los Estados miembros que deseen implantar plataformas propias. Alemania, Polonia y Reino Unido disponen de plataformas propias, mientras que España, junto con los otros 23 Estados miembros restantes, subasta sus derechos de emisión en la plataforma común.

En octubre de 2012 se iniciaron las subastas de derechos de emisión del tercer periodo de comercio de derechos de emisión, 2013-2020. Desde
Entonces, las subastas de la plataforma común se vienen celebrando con normalidad cada lunes, martes y jueves. En 2013 se subastaron más del 40% de los derechos de emisión. Durante el periodo 2013-2020 está previsto que el porcentaje sea superior: se estima que la mitad de los derechos pueden subastarse.

En 2015 se adoptó la **Decisión 2015/1814** del Parlamento Europeo y del Consejo relativa al establecimiento y funcionamiento de una **reserva de estabilidad del mercado** en el marco del RCDE UE. Los antecedentes están relacionados fundamentalmente con la crisis económica, cuyos efectos causaron una reducción de emisiones superior a lo previsto, ya que en el año 2013 el excedente de derechos de emisión alcanzó aproximadamente los 2.100 millones de derechos de emisión en el conjunto de la Unión Europea. Esta situación provocó una bajada considerable del precio de los derechos de emisión.

La Decisión 2015/1814 propone retirar automáticamente del mercado un porcentaje de los derechos de emisión del RCDE UE, que se incorporará a una reserva cuando el número total de derechos en circulación supere un determinado umbral predefinido. Cuando suceda lo contrario, los derechos de emisión volverán a introducirse en el mercado. La reserva se establecerá en 2018 y será operativa a partir del 1 de enero de 2019.

De este modo, la **reserva de estabilidad del mercado absorbe o emite derechos** si la cantidad total de derechos de emisión en circulación se encuentra fuera de un rango predefinido. La reserva también absorberá los derechos aplazados, los 900 millones de derechos cuya subasta se aplazó del periodo 2014-2016 al periodo 2019-2020, y los derechos no asignados, que se transferirán directamente a la reserva de estabilidad del mercado en 2020. Con este aplazamiento de subastas en la tercera fase se pretende reequilibrar la oferta y la demanda a corto plazo y reducir la volatilidad de los precios sin efectos significativos sobre la competitividad.

Proyectos de captura y almacenamiento de carbono (CAC) y de energías renovables innovadoras (FER) en el marco de la Directiva 2003/87/CE

La **captura y almacenamiento de carbono** consiste en captar el dióxido de carbono emitido por las instalaciones industriales, transportarlo a un emplazamiento de almacenamiento y finalmente inyectarlo y confinarlo en una formación geológica subterránea adecuada, con vista a su almacenamiento permanente. De acuerdo con los estudios efectuados para evaluar el impacto de la Directiva 2009/31/CE del Parlamento Europeo y del Consejo, de 23 de abril de 2009, relativa al almacenamiento geológico de dióxido de carbono, aplicar esta tecnología podría llegar a evitar en 2030, emisiones que representan aproximadamente el 15% de las reducciones exigidas en el ámbito de la Unión Europea.

La Directiva 2003/87/CE por la que se establece un régimen comunitario para el comercio de derechos de emisión de gases de efecto invernadero, modificada por la Directiva 2009/29/CE para perfeccionar y ampliar el RCDE, estipula en su
artículo 10 bis (8) que «hasta el 31 de Diciembre de 2015 estarán disponibles hasta 300 millones de derechos de emisión en la reserva de nuevos entrantes para ayudar a fomentar la construcción y utilización de hasta 12 proyectos comerciales de demostración destinados a la captura y el almacenamiento geológico de CO2 (en adelante CAC), en condiciones de seguridad para el medio ambiente, así como para proyectos de tecnologías innovadoras de energía renovable (en adelante FER) en el territorio de la Unión».

Mediante la Decisión 2010/670/UE de la Comisión se establecen las normas y los criterios aplicables a la selección y la ejecución de proyectos comerciales de demostración de CAC y de proyectos de demostración de FER, que abarcan 300 millones de derechos de emisión procedentes de la reserva de nuevos entrantes, y los principios básicos aplicables a la monetarización de los derechos de emisión y a la gestión de los ingresos. La selección de proyectos se llevó a cabo mediante dos rondas de convocatorias organizadas por la Comisión y dirigidas a los Estados miembros, que cubrieron el equivalente a 200 millones de derechos de emisión para la primera ronda, y el equivalente a 100 millones de derechos de emisión más los derechos de emisión remantes de la primera ronda, para la segunda ronda.

La Decisión 2015/191 de la Comisión, de 5 de febrero de 2015, tiene en cuenta que debido a la crisis económica, no será posible, por lo que se refiere a un número significativo de proyectos adjudicados en virtud de la Decisión 2010/670/UE, alcanzar una decisión final de inversión en el plazo de veinticuatro meses a partir de la adopción de la decisión de adjudicación en el caso de los proyectos de demostración de FER, o en el plazo de treinta y seis meses a partir de la adopción de la decisión de adjudicación en el caso de los proyectos de demostración de CAC. Por tanto, tampoco será posible que tales proyectos entren en funcionamiento en un plazo de cuatro años a partir de la adopción de la decisión de adjudicación. Los plazos para la decisión final de inversión y la fecha de puesta en funcionamiento deben, por tanto, prorrogarse dos años. Debe aplicarse también un período de gracia de un año respecto a la fecha de puesta en funcionamiento.

La UE ha apostado por la captura y el almacenamiento geológico de carbono como una tecnología de transición que contribuirá a mitigar el cambio climático. El desarrollo de esta tecnología y la inversión en la misma por parte de las industrias y empresas requiere definir un marco técnico, económico y jurídico que garantice su despliegue de manera segura para el medio ambiente. El Proyecto de Ley tiene el objetivo de incorporar al ordenamiento jurídico español las disposiciones
 contenidas en la citada Directiva, adaptándolas a la realidad industrial, geológica y energética de nuestro país, y estableciendo una base jurídica para el almacenamiento geológico de dióxido de carbono, en condiciones seguras para el medioambiente y las personas, para contribuir a la lucha contra el cambio climático.

Seguimiento y Notificación

El seguimiento, la notificación y la verificación de las emisiones constituye un elemento clave en el diseño de todo régimen de comercio de derechos de emisión. Mediante este mecanismo se determina cuáles han sido las emisiones de cada una de las instalaciones y operadores aéreos afectados y, por tanto, qué cantidad de derechos de emisión anuales deben entregar. Sin un sistema riguroso de seguimiento y verificación de las emisiones, es imposible garantizar que no se produzcan emisiones al margen de la obligación de entrega. Esto último pondría en peligro el objetivo medioambiental y podría suponer un tratamiento discriminatorio entre los afectados.

El procedimiento anual de seguimiento, notificación y verificación de emisiones, con todos los procesos que lo acompañan, es lo que se denomina **ciclo de cumplimiento del RCDE**. Para seguir y declarar sus emisiones anuales, las instalaciones industriales y los operadores aéreos incluidos en el RCDE UE deben tener un **plan de seguimiento** que se haya aprobado. Además, el plan está ligado a un permiso de explotación, obligatorio para las instalaciones industriales. Los operadores deben presentar cada año un **informe de emisiones**.

Los **Reglamentos sobre el seguimiento y notificación de emisiones y de verificación y acreditación**, fueron publicados en el Diario Oficial de la Unión Europea el 12 de julio de 2012 y son aplicables a partir del 1 de enero de 2013:

- Reglamento (UE) 601/2012 de la Comisión, de 21 de junio de 2012, sobre el seguimiento y la notificación de las emisiones de gases de efecto invernadero

- Reglamento (UE) 600/2012 de la Comisión, de 21 de junio de 2012, relativo a la verificación de los informes de emisiones de gases de efecto invernadero y de los informes de datos sobre toneladas-kilómetro y a la acreditación de los verificadores

La Comisión Europea ha desarrollado una serie de documentos de orientaciones y formularios para apoyar a los Estados miembros en la aplicación armonizada de los citados Reglamentos de Seguimiento y Notificación y Acreditación y Verificación.

El **Reglamento (UE) 601/2012**, de la Comisión, se ha modificado mediante el **Reglamento (UE) 206/2014**, de la Comisión, modificando el anexo VI para adaptar los datos de los potenciales de calentamiento global de los gases de efecto invernadero con los establecidos en la metodología que figura en la Decisión 15/CP.17 de la Conferencia de las Partes de la Convención Marco de las Naciones Unidas sobre el Cambio Climático a efectos de aplicación de las Directrices IPCC 2006 para los inventarios nacionales de gases de efecto invernadero del Grupo Intergubernamental de
Expertos sobre Cambio Climático. El nuevo anexo VI del Reglamento (UE) 601/2012, de la Comisión, será aplicable a partir del 1 de enero de 2013.

También el Reglamento (UE) 601/2012, de la Comisión, se ha modificado mediante el Reglamento (UE) 743/2014, de la Comisión, por el que se sustituye el anexo VII en lo que se refiere a la aclaración de la clasificación de los combustibles y materiales pertinentes, a fin de mejorar la coherencia en la aplicación de los factores pertinentes utilizados en el cálculo de las emisiones. El nuevo anexo VII entró en vigor el 31 de julio de 2014.

Por otra parte, el Reglamento (UE) 525/2013 del Parlamento Europeo y del Consejo de 21 de mayo de 2013, relativo a un mecanismo para el seguimiento y la notificación de las emisiones de gases de efecto invernadero y para la notificación, a nivel nacional o de la Unión, de otra información relevante para el cambio climático, y por el que se deroga la Decisión 280/2004/CE, establece en su artículo 13 las obligaciones de notificación de los Estados miembros en cuanto a información sobre sus políticas y medidas de lucha contra el cambio climático y sobre las actuaciones de la estrategia de desarrollo bajo en carbono.

Así mismo, los artículos 21 y 22 del Reglamento de ejecución 749/2014 de la Comisión de 30 de junio de 2014 relativo a la estructura, el formato, los procesos de presentación de la información y la revisión de la información notificada por los Estados miembros con arreglo al Reglamento (UE) 525/2013, establece los datos sobre los que informar y los formatos tabulares para el envío de dicha información.

Propuesta de Directiva por la que se modifica la Directiva 2003/87/CE

Uno de los objetivos acordados por el Consejo de Europa como parte del Marco de actuación en materia de clima y energía para el 2030 es la reducción de las emisiones de gases de efecto invernadero en la UE al menos un 40% para 2030 con respecto a los niveles de 1990. Para ello, es necesaria la reforma del RCDE UE de manera que se garantice el buen funcionamiento del sistema.

Como primer paso de esta reforma, la UE adoptó la decisión de crear una reserva de estabilidad del mercado para el RCDE UE, teniendo como finalidad corregir el gran excedente de derechos de emisión que se ha generado y aumentar la resistencia del sistema respecto a los desequilibrios entre la oferta y la demanda de derechos de emisión.

El 15 de julio de 2015 la Comisión presentó una segunda propuesta de revisión más amplia. Los cambios propuestos tienen por objeto intensificar las reducciones rentables de emisiones y facilitar las inversiones en tecnologías hipocarbónicas. La segunda propuesta de la Comisión incluye entre otros los siguientes puntos:

• Una revisión del sistema de asignación gratuita, centrada en los sectores en mayor riesgo de fuga de carbono.

• El establecimiento de un número considerable de asignaciones gratuitas reservadas para instalaciones nuevas y en crecimiento.
• Unas normas más flexibles para adecuar mejor las asignaciones gratuitas con las cifras de producción.

• La actualización de 52 parámetros de referencia para medir el rendimiento de las emisiones en función de los avances tecnológicos habidos desde 2008.

La Comisión también propone la creación de varios mecanismos de apoyo a la industria y a los sectores energéticos para que asuman los retos de innovación e inversión, con objeto de conseguir la transición hacia una economía hipocarbónica.

La nueva Directiva EU ETS incluirá tres mecanismos propios de financiación:

• El Fondo de Innovación, que amplía el apoyo existente a las tecnologías innovadoras y punteras en la industria; está destinado a apoyar proyectos innovadores industriales, nuevas tecnologías en energías renovables, y de captura y almacenamiento geológico de carbono.

• El Fondo de Modernización, alimentado con el 2% de los derechos que se subasten, destinado a facilitar las inversiones en la modernización del sector energético y sistemas energéticos más amplios, así como incrementar la eficiencia energética en los Estados Miembros de ingresos más bajos, aquellos países cuyo PIB per cápita en el año 2013 fuera inferior al 60% de la media europea. No será de aplicación en España ya que en nuestro caso es del 94%.

• La asignación gratuita de derechos de emisión al sector de generación eléctrica, también con objeto de promover la modernización del sector energético de Estados miembros con PIB per cápita inferior al 60% de la media UE.

Así mismo se propone introducir una cláusula de revisión y alineación con los objetivos y obligaciones de las partes que fueron establecidos en el Acuerdo de París. En particular, la revisión se centraría en los siguientes aspectos:

• la coherencia del factor de reducción lineal con los objetivos de reducción de emisiones;

• la coherencia de los criterios de fuga de carbono con el desarrollo de la política de cambio climático en terceros países.

La propuesta de revisión del RDCE UE se está actualmente negociando y tendrá que ser adoptada mediante el procedimiento legislativo ordinario de manera conjunta entre el Consejo y el Parlamento Europeo.

9.2.3. Control de las emisiones de los sectores industriales

Plan Nacional Transitorio (PNT) para las grandes instalaciones de combustión

La Directiva 2010/75/UE, del Parlamento Europeo y del Consejo, de 24 de noviembre, de emisiones industriales, trasladada a la legislación española en sus disposiciones de carácter general mediante la Ley 5/2013 y los preceptos de marcado carácter
España, según lo establecido en el Directiva 2010/75/UE, presentó el PNT inicial a la Comisión Europea en diciembre de 2012. La Comisión, por medio de la Decisión 2013/799/UE, de 17 de diciembre de 2013, no aprobó el plan, señalando una serie de medidas y correcciones a llevar a cabo en el mismo si España desea aplicar un plan nacional transitorio. Tras haber realizado las modificaciones pertinentes, España presentó en diciembre de 2014 el PNT a la Comisión para su aprobación definitiva, aprobación que se ha realizado por Decisión de la Comisión de 29 de mayo de 2015.

El PNT español fue aprobado por Acuerdo de Consejo de Ministros el 25 de noviembre de 2016 a propuesta de los Ministerios de Agricultura y Pesca, Alimentación y Medio Ambiente y de Energía, Turismo y Agenda Digital.

El Plan, al que están acogidas 29 instalaciones, permitirá a las grandes instalaciones de combustión acometer las inversiones medioambientales necesarias para cumplir con los valores límite de emisión individuales establecidos en la Directiva de emisiones industriales, a partir del 1 de julio de 2020.

Directiva 2015/2193/UE, del Parlamento Europeo y del Consejo, de 25 de noviembre, sobre limitación de las emisiones a la atmósfera de determinados agentes contaminantes procedentes de las instalaciones de combustión medianas

Las emisiones procedentes de las grandes instalaciones de combustión vienen siendo reguladas...
Los principales aspectos de esta Directiva son los siguientes: la exigencia de un permiso o registro de las instalaciones, el establecimiento de valores límite de emisión para los tres tipos de contaminantes en función del tipo y potencia de la instalación y del combustible utilizado, la obligación de que los titulares efectúen un seguimiento de las emisiones y de que las autoridades nacionales controlen y, en su caso, sancionen los incumplimientos.

La directiva trata de reducir costes y cargas administrativas a las plantas más pequeñas (con potencia térmica nominal entre 1 MW e inferior a 50 MW, ya que las emisiones de este tipo de instalaciones contribuyen cada vez más a la contaminación del aire atmosférico debido, en particular, al creciente uso de la biomasa como combustible, impulsado por las políticas sobre el clima y energía.

En el anexo II de la directiva, sin perjuicio del capítulo II de la Directiva 2010/75/UE cuando sea aplicable, figuran los VLE aplicables a las instalaciones de combustión medianas, según sean motores o turbinas de gas o del resto de tipo de instalaciones, así como si se refieren a instalaciones nuevas o a instalaciones existentes, considerándose existentes aquellas que se hayan puesto en funcionamiento antes del 20 de diciembre de 2018 o para las que se concediera un permiso antes del 19 de diciembre de 2017 de conformidad con la legislación nacional, siempre que la instalación se ponga en funcionamiento a más tardar el 20 de diciembre de 2018.

Los VLE del anexo II de la directiva aplicarán para las nuevas instalaciones de combustión medianas desde la entrada en vigor de la misma, y para las instalaciones de combustión medianas existen-
tes aplicarán a partir del 1 de enero de 2025 si su potencia térmica nominal es superior a 5 MW, y desde el 1 de enero de 2030 si es igual o inferior a 5 MW. No aplicarán a las instalaciones situadas en las Islas Canarias, los departamentos franceses de ultramar, las islas Azores y Madeira.

Los Estados miembros deben adoptar las medidas necesarias que garanticen que ninguna nueva instalación de combustión mediana esté en funcionamiento sin haber obtenido un permiso o haber sido registrada. Esta obligatoriedad aplicará a partir del 1 de enero de 2024 para las instalaciones existentes de potencia térmica nominal superior a 5 MW y a partir del 1 de enero de 2029, para las instalaciones existentes de potencia térmica nominal igual o inferior a 5 MW.

La directiva recoge ciertas exenciones y relajaciones del cumplimiento de los requisitos de la misma, en función de circunstancias ambientales, tipo de combustible utilizado u horas de funcionamiento.

Los Estados miembros deberán trasladar a su legislación la directiva antes del 19 de diciembre de 2017.

9.3. ÁMBITO NACIONAL

Régimen de comercio de derechos de emisión en el periodo 2013-2020

Los puntos más significativos de la aplicación del RCDE UE en España durante el 2016 son los siguientes:

- El sector de generación eléctrica ha registrado una reducción de sus emisiones del 19,8% por la disminución de un 28,3% de las emisiones de las centrales térmicas de carbón

- Los sectores industriales en su conjunto tuvieron una ligera disminución de las emisiones, del 0,4%, aunque el comportamiento ha sido diferente entre unos sectores y otros

- El grado de cumplimiento sigue siendo alto, por encima del 99%

- En la comparativa entre emisiones y asignación de derechos en el periodo 2013-2016, el conjunto de instalaciones afectadas ha tenido un déficit de asignación del 51%, debido fundamentalmente al hecho de que desde el 1 de enero de 2013 la generación de electricidad no recibe asignación gratuita

- Se ha tramitado la asignación de 29 ampliaciones y 23 instalaciones nuevas que han recibido asignación

- En el 2016 España participó en 138 subastas e ingresó 369 millones de euros, siendo el precio medio de 5,25 euros/derecho.

Asignación gratuita derechos de emisión en el periodo 2013-2020

La Ley 1/2005, de 9 de marzo, por la que se regula el régimen para el comercio de derechos de emisión de gases de efecto invernadero, tras su modificación por la Ley 13/2010, de 5 de julio,
establece en su artículo 17 que la metodología de asignación gratuita transitoria será determinada por las normas armonizadas que se adopten a nivel comunitario.

Mediante la Decisión de la Comisión 2011/278/UE, de 27 de abril de 2011, se han establecido las normas transitorias de la Unión para la armonización de la asignación gratuita de derechos de emisión con arreglo al artículo 10 bis de la Directiva 2003/87/CE del Parlamento Europeo y del Consejo. El Real Decreto 1722/2012 precisa aspectos relacionados con la aplicación en España del capítulo IV de dicha Decisión 2011/278/UE.

Por Acuerdo del Consejo de Ministros, de 15 de noviembre de 2013, se aprobó, a propuesta de los Ministerios de Economía y Competitividad, de Industria, Energía y Turismo, y de Agricultura, Alimentación y Medio Ambiente, la asignación final gratuita de derechos de emisión de gases de efecto invernadero a las instalaciones sujetas al régimen de comercio de derechos de emisión para el periodo 2013-2020, que se dio publicidad mediante la Resolución de 23 de enero de 2014, de la Dirección General de la Oficina Española de Cambio Climático.

Para la aplicación de los preceptos establecidos en el capítulo IV de la Decisión 2011/278/UE, que contempla las normas relacionadas con la asignación de derechos a nuevos entrantes (nuevas instalaciones o ampliaciones significativas de las existentes), así como el ajuste en la asignación final inicial de derechos, a la baja debido a ceses parciales (reducciones del nivel de actividad), o al alza por recuperación del nivel de actividad, o reducciones significativas de capacidad (cambios físicos que den lugar a un descenso significativo de la capacidad), se dictó el Real Decreto 1722/2012, de 28 de diciembre, por el que se desarrollan aspectos relativos a la asignación de derechos de emisión en el marco de la Ley 1/2005, de 9 de marzo, por la que se regula el régimen del comercio de derechos de emisión de gases de efecto invernadero.

En aplicación del Real Decreto 1722/2012, por medio de la Resolución de 2 de diciembre de 2015 del Secretario de Estado de Medio Ambiente, se aprueban los ajustes en las asignaciones de derechos de emisión de gases de efecto invernadero, para el periodo 2013-2020, a las instalaciones que han registrado una reducción significativa de capacidad, que han cesado parcialmente sus actividades o que han recuperado su nivel de actividad antes del 1 de enero de 2015.

La Resolución de 20 de septiembre de 2016 del Secretario de Estado de Medio Ambiente aprueba los ajustes en las asignaciones de derechos de emisión de gases de efecto invernadero, para el periodo 2013-2020, a un grupo de instalaciones que han registrado una reducción significativa de capacidad, que han cesado parcialmente sus actividades o que han recuperado su nivel de actividad antes del 1 de enero de 2016.

Así mismo, en la Resolución de 5 de diciembre de 2016 del Secretario de Estado de Medio Ambiente se aprueban los ajustes en las asignaciones de derechos de emisión de gases de efecto invernadero, para el periodo 2013-2020, a un segundo grupo de 6 instalaciones que han registrado una reducción significativa de capacidad, que han cesado parcial-
mente sus actividades o que han recuperado su nivel de actividad antes del 1 de enero de 2016.

Por otro lado, el Acuerdo de Consejo de Ministros, de 17 de julio de 2015, aprueba la modificación de las asignaciones de derechos de emisión de gases de efecto invernadero para el periodo 2015-2020 a las instalaciones afectadas por la Decisión 2014/746/UE de la Comisión, de 27 de octubre de 2014, por la que se establece la segunda lista de sectores y subsectores que se consideran expuestos a un riesgo significativo de fuga de carbono.

Asignación gratuita derechos de emisión a nuevos entrantes

Con fechas de 25 de abril de 2014, 10 de abril de 2015, y 22 de abril de 2016, el Consejo de Ministros, a propuesta de los Ministerios de Economía y Competitividad, de Industria, Energía y Turismo, y de Agricultura, Alimentación y Medio Ambiente, ha adoptado la asignación individual de derechos de emisión al primer, segundo y tercer conjunto de instalaciones, respectivamente, que solicitan asignación como nuevos entrantes del periodo 2013-2020 y se encuentran incluidas en el ámbito de aplicación de la Ley 1/2005, de 9 de marzo, por la que se regula el régimen del comercio de derechos de emisión de gases de efecto invernadero.

Hoja de Ruta de Sectores Difusos 2020

Los sectores difusos abarcan las actividades no sujetas al comercio de derechos de emisión. Representan por tanto aquellos sectores menos intensivos en el uso de la energía. Forman parte de esta categoría los siguientes sectores: residencial, comercial e institucional, transporte, agrícola y ganadero, gestión de residuos, gases fluorados, y pequeña industria no sujeta al comercio de emisiones.

La Unión Europea se ha comprometido a reducir sus emisiones de gases de efecto invernadero de los sectores difusos en el año 2020 un 10% respecto a los niveles del año 2005. El esfuerzo necesario para conseguir esta reducción global se reparte entre los distintos Estados miembros a través de la Decisión de Reparto de Esfuerzos (Decisión 406/2009/CE).

En septiembre de 2014, el Ministerio de Agricultura, Alimentación y Medio Ambiente ha elaborado la Hoja de Ruta Difusos hasta el año 2020, que consta de 43 medidas para reducir las emisiones de CO₂ de los sectores difusos, en concreto de los sectores residencial, transporte, agrícola y ganadero, residuos, gases fluorados e industria no sujeta al sistema de comercio de derechos de emisión. Se trata de una herramienta de toma de decisiones para cumplir con los objetivos nacionales de reducción de emisiones en los sectores difusos, dentro del marco del actual Paquete de Energía y Cambio Climático adoptado por la Unión Europea. En el caso español este objetivo es la reducción del 10% de las emisiones de estos sectores en el año 2020 con respecto a las emisiones de los mismos en el año 2005.

Las medidas que comporta la Hoja de Ruta Difusos 2020 se han acordado en grupos de trabajo de la Administración General del Estado, de la Administración Autonómica y Local, junto con expertos sectoriales, y que, además, han sido consultadas más de 40 organizaciones, entre las que se
encuentran universidades, asociaciones, sindica-
tos, cooperativas y empresas especializadas.

Reglamento de Reparto de Esfuerzos

La Comisión Europea publicó el 20 de julio de 2016 una propuesta normativa sobre el **Reglamento de Reparto de Esfuerzos** que regulará los objetivos climáticos para los sectores difusos de todos los estados miembros entre 2021 y 2030, con la intención de asegurar que la Unión Europea cumpla con sus objetivos climáticos en 2030, teniendo en cuenta que dichos sectores suponen el 60% de las emisiones de gases de efecto invernadero en Europa. Los sectores difusos deben contribuir al objetivo global de reducción de emisiones de la Unión Europea con una reducción del 30% en 2030 respecto a los niveles del 2005.

Este instrumento, junto con la **revisión del RCDE UE** del sistema de comercio de derechos de emisión, son las dos herramientas principales para alcanzar los objetivos climáticos acordados en la Conferencia de las Partes de París.

En la actualidad, la propuesta de Reglamento de Reparto de Esfuerzos se encuentra en el proceso de co-decisión: tanto el Parlamento Europeo como el Consejo de la Unión Europea se encuentran negociando la propuesta.

Proyectos CLIMA

La Ley 2/2011, de 4 de marzo, de Economía Sostenible crea, en su artículo 91, el **Fondo de Carbono para una Economía Sostenible (FES-CO2)**.

Este nuevo instrumento de financiación climática, se concibe con el objetivo de reorientar la actividad económica hacia modelos bajos en carbono, al mismo tiempo que se contribuye al cumplimiento de los objetivos internacionales asumidos por España en materia de reducción de emisiones de gases de efecto invernadero.

El Real Decreto 1494/2011, de 24 de octubre, por el que se regula el Fondo de Carbono para una Economía Sostenible, define sus principios de actuación.

En 2015, el FES-CO2 ha lanzado la cuarta convocatoria de **Proyectos Clima** para seleccionar proyectos en los conocidos como «sectores difusos», para apoyar y fomentar actividades bajas en carbono mediante la adquisición de las reducciones verificadas de las emisiones generadas. Del mismo modo que en las tres anteriores convocatorias, se pretende dar continuidad e impulso al desarrollo de iniciativas de carácter programático que engloben varios proyectos dentro de un mismo paraguas o programa.

La Convocatoria 2015 de Proyectos Clima se lanzó el 15 de febrero de 2015 mediante la apertura del plazo para la presentación de propuestas de proyectos (PINs) cuya entrada en funcionamiento no sea posterior a 2016.

El 29 de marzo de 2016 se lanzó la quinta convocatoria de Proyectos Clima con el objetivo de dar apoyo y fomentar actividades bajas en carbono mediante la adquisición de las reducciones verificadas de emisiones de gases de efecto invernadero generadas.
La Convocatoria 2016 de Proyectos Clima ha contado con una dotación de 20 millones de euros para proyectos dirigidos a la reducción de las emisiones en los sectores difusos. Como resultado de la misma se seleccionaron 63 Proyectos y Programas Clima cuyos promotores formalizaron los respectivos contratos de compra a través del cual el FES-CO2 adquirirá las reducciones de emisiones verificadas que generen.

Los Proyectos Clima han demostrado ser un instrumento eficaz para luchar contra el cambio climático logrando la reducción de emisiones de CO₂ en nuestro país. A través de este nuevo modelo de colaboración público-privada, se promocionan oportunidades reales hacia una economía baja en carbono.

Hasta el año 2016 hay unos 200 proyectos de reducción de emisiones aprobados. Existen 19 tipologías de Proyectos Clima, creadas sobre la base de las ideas recibidas de los promotores de proyecto. Para cada una de ellas, el Fondo ha elaborado metodologías para el cálculo de las reducciones de emisiones.

Planes de impulso al Medio Ambiente:
PIMA Sol, PIMA Aire, PIMA Tierra, PIMA Transporte

Los Planes de Impulso al Medio Ambiente son una herramienta para el fomento de una serie de medidas concretas que contribuyan a la mejora de las condiciones medioambientales, al mismo tiempo que sirven de impulso de la actividad económica y el empleo. Aunque los diferentes PIMAs se presentan como iniciativas específicas, forman parte de estrategias o planteamientos más amplios, que persiguen la consecución de objetivos a nivel nacional.

El 6 de noviembre de 2015 se aprobó por Acuerdo de Consejo de Ministros el Plan de Impulso al Medio Ambiente para la reducción de emisiones de gases de efecto invernadero en el sector empresarial, **PIMA Empresa**. A su vez, se aprobó el Real Decreto 1007/2015 que regula la adquisición de créditos de carbono por parte del Fondo de carbono para una economía sostenible en el marco de dicho Plan, y establece, en su artículo 5, que se publicarán mensualmente los fondos disponibles. A fecha 1 de septiembre de 2016 los fondos disponibles ascienden a 5.000.000 €.

El plan **PIMA Empresa** es un mecanismo incentivador para las empresas que adopten la huella de carbono como herramienta de competitividad y sostenibilidad, avanzando en la internalización de la huella de carbono en sus estrategias a medio y largo plazo. Esta iniciativa se suma al Real Decreto 163/2014, de 14 de marzo, por el que se crea el registro de huella de carbono, compensación y proyectos de absorción de dióxido de carbono, que permite a las empresas inscribir su huella de carbono, así como sus planes de reducción y compensación.

Con el objetivo de reducir de forma significativa las emisiones de contaminantes atmosféricos, principalmente partículas, así como las emisiones de CO₂ mediante la renovación del parque actual de vehículos por modelos más eficientes y de menor impacto ambiental disponibles en el mercado.
El Consejo de Ministros aprobó el 27 de noviembre de 2015, a propuesta del Ministerio de Agricultura, Alimentación y Medio Ambiente, la distribución de ayudas en materia de residuos fijadas en la Conferencia Sectorial de Medio Ambiente celebrada el pasado 16 de septiembre. El Ministerio distribuyó 9,7 millones de euros entre las Comunidades Autónomas para mejorar la gestión de los residuos. De este importe, 8,2 millones de euros corresponden al Plan PIMA Residuos, para mejorar la gestión de los residuos y contribuir a reducir las emisiones de gases de efecto invernadero. Los 1,5 millones de euros restantes se destinaron a la mejora de los puntos limpios que gestionan las entidades locales.

El PIMA Residuos establece ayudas para la adecuación de los vertederos a la normativa comunitaria mediante proyectos que reduzcan las emisiones asociadas, e impulsa la recogida separada de la fracción orgánica y su tratamiento biológico posterior. Respecto a los puntos limpios que gestionan las entidades locales, éstos desempeñan un papel esencial en la recogida separada de los residuos municipales que no se recogen de manera domiciliaria, y, específicamente, tienen gran relevancia en la recogida de los residuos de aparatos eléctricos y electrónicos (RAEE). El Plan PIMA Residuos ha alcanzado a 150 proyectos, de los cuales más del 90% se están ejecutando. En la actualidad se trabaja en la puesta en marcha de otra edición de este Plan.
Programa de Incentivos al Vehículo Eficiente (Plan PIVE)

El Plan PIVE, también conocido como Programa de Incentivos al Vehículo Eficiente, tiene como objetivo la renovación de flotas de transporte en nuestro país. Con esto, lo que se pretende es que haya una reducción del consumo energético nacional, mediante la modernización del parque automovilístico con modelos más eficientes, con menos consumo de combustible y emisiones de CO₂.

En el año 2015, se efectuó por parte del anteriormente denominado Ministerio de Industria, Energía y Turismo la octava convocatoria del Programa de Incentivos al Vehículo Eficiente, mediante el Real Decreto 380/2015, de 14 de mayo, por el que se regula la concesión directa de subvenciones del Programa de Incentivos al Vehículo Eficiente, PIVE-8, posteriormente modificado por el Real Decreto 1071/2015, de 27 de noviembre.

Para esta edición se ha destinado un presupuesto de 225 millones de euros. En total, el Programa de Incentivos al Vehículo Eficiente pretende substituir 1.185.000 vehículos antiguos por las mismas unidades de vehículos. Con ello se conseguiría un ahorro anual de 412 millones de litros de combustible, evitando la importación de 2.628.687 barriles de petróleo al año y la reducción de la emisión de 850.000 toneladas de CO₂.

Se espera que el PIVE 8 sea la última edición y en un principio tenía como límite de vigencia hasta el 31 de diciembre de 2015 o hasta que se agotase el presupuesto anteriormente citado. Sin embargo, el Gobierno decidió prorrogarlo siete meses más, hasta el 31 de julio de 2016, ya que el presupuesto todavía no se ha agotado. Hay que destacar que esta octava y última convocatoria es la que contaba con mayor partida presupuestaria entre todas las anteriores.

Estos planes han sido aprobados en el marco de las políticas de mejora de la eficiencia energética a las que está obligado el Estado español en el marco de la Directiva 2012/27/UE, del Parlamento Europeo y del Consejo, de 25 de octubre de 2012, relativa a la eficiencia energética, que obliga a los Estados miembros a asumir objetivos de mejora de la eficiencia energética en el horizonte del año 2020.

Huella de carbono

Dentro de los objetivos de reducción de las emisiones de gases de efecto invernadero en la Unión Europea, mediante la Decisión 406/2009/CE se han cuantificado los esfuerzos que deben realizar los Estados miembros en los sectores difusos (no incluidos en el régimen del comercio de derechos de emisión) para el año 2020, con respecto de las emisiones del año 2005, correspondiendo a España una reducción del 10%.

Para conseguir dicho objetivo, se están llevando a cabo diversas actuaciones, como las anteriormente reseñadas, a las que hay que añadir la creación por el Ministerio de Agricultura, Alimentación y Medio Ambiente de un registro de huella de carbono, compensación y proyectos de absorción de dióxido de carbono.
El Real Decreto 163/2014, de 14 de marzo, crea el registro de huella de carbono, compensación y proyectos de absorción de dióxido de carbono, entrando en funcionamiento el 29 de mayo de 2014. Este registro, de carácter voluntario, nace con la vocación de fomentar el cálculo y reducción de la huella de carbono por parte de las organizaciones españolas, así como promover los proyectos que mejoren la capacidad sumidero de España.

Las organizaciones que voluntariamente calculen su huella de carbono y establezcan un plan de reducción pueden inscribirse en el Registro. Del mismo modo, si estas organizaciones quieren compensar su huella de carbono, esta compensación puede llevarse a cabo mediante proyectos de sumideros agroforestales en España, que estarán inscritos en la segunda sección del registro.

Real Decreto 163/2014, de 14 de marzo

Por otro lado, en la tercera fase de aplicación del régimen europeo de comercio de gases de efecto invernadero (2013-2020) la generación eléctrica no recibe derechos de emisión gratuitos, por lo que, a partir de 2013, todas las instalaciones de generación eléctrica deben comprar los derechos en subasta o en el mercado de derechos de emisión, trasladando este coste al consumidor a través del precio de la electricidad. En consecuencia, la Unión Europea permite a cada Estado miembro, según su presupuesto nacional, compensar estos costes indirectos para las industrias de determinados sectores o subsectores, a los que se considera expuestos a un riesgo significativo de fuga de carbono (deslocalización de industrias) como consecuencia del incremento de precio de la electricidad debido a este coste, según se establece en la Comunicación de la Comisión Europea 2012/C 158/04.

Para paliar en la medida de lo posible el impacto de dichos costes sobre la competitividad de las industrias españolas, mediante el **Real Decreto 163/2014**, se crea un mecanismo de compensación de costes de emisiones indirectas de gases de efecto invernadero para empresas de determinados sectores y subsectores industriales a los que se considera expuestos a un riesgo significativo de fuga de carbono (deslocalización de industrias) como consecuencia del incremento de precio de la electricidad debido a este coste, según se establece en la Comunicación de la Comisión Europea 2012/C 158/04.
«Ayudas compensatorias por costes de emisiones indirectas de CO₂», en forma de subvención, previsto, en principio, para los años 2014 y 2015, que podrá ser prorrogado en la medida que lo permita la normativa europea.

El Real Decreto 1055/2014, regula los beneficiarios que pueden acogerse a las ayudas, el régimen de concesión y criterios de acumulación de las mismas, los criterios de evaluación, así como la determinación de los costes subvencionables e intensidad máxima de ayuda, estableciendo, en su disposición final segunda, que el Ministerio de Industria, Energía y Turismo dictará las disposiciones necesarias para el desarrollo y ejecución del mismo.

La complejidad que ha supuesto el establecimiento del citado mecanismo de compensación, la experiencia adquirida en la gestión de las convocatorias anteriores y las subvenciones previstas, la audiencia de los sectores interesados y las orientaciones europeas en relación con el Marco de actuación de la UE en materia de clima y energía aconsejan una prórroga de aquél hasta 2020.

La finalidad de la modificación que actualmente se está tramitando es extender hasta 2020 la vigencia del mecanismo de compensación de costes indirectos de CO₂ en línea con el marco dado por las Directrices comunitarias relativas a determinadas medidas de ayuda estatal en el contexto del régimen del comercio de derechos de emisión de gases de efecto invernadero establecidas para el periodo 2013-2020 ambos inclusive (Comunicación de la Comisión (2012/C 158/04). También se pretende introducir algunas modificaciones de carácter formal en relación con las bases regula-
doras, en beneficio de su operatividad.

Real Decreto 183/2015, de 13 de marzo, por el que se modifica el Reglamento de desarrollo parcial de la Ley 26/2007, de 23 de octubre, de Responsabilidad Medioambiental, aprobado por el Real Decreto 2090/2008, de 22 de diciembre

La Ley 26/2007, de 23 de octubre, de Responsabilidad Ambiental, que trasladó a la legislación española la Directiva 2004/35/CE, del Parlamento Europeo y del Consejo, sobre responsabilidad medioambiental en relación con la prevención y reparación de daños medioambientales, ha establecido un nuevo régimen jurídico de reparación de daños medioambientales de acuerdo con el cual los operadores que ocasionen daños al medio ambiente, o amenacen con ocasionarlos, deben adoptar las medidas necesarias para prevenir su causación o, cuando el daño se haya producido, para devolver los recursos naturales dañados al estado en el que se encontraban antes del mismo.

Para asegurar que los operadores dispongan de recursos económicos suficientes para poder hacer frente a los costes derivados de la adopción de las medidas de prevención, de evitación y de reparación de los daños medioambientales, la ley establece que es requisito indispensable para el ejercicio de las actividades profesionales relacionadas, en el anexo III de la misma el disponer de una garantía financiera, correspondiendo a la autoridad competente la responsabilidad del establecimiento de la cuantía de la misma para cada
tipo de actividad, en función de la intensidad y extensión del daño que se pueda ocasionar, de acuerdo con los criterios que se fijen reglamentariamente.

Mediante el Real Decreto 183/2015, modificando el apartado 2.b) del artículo 37 del Real Decreto 2090/2008 que aprobó el Reglamento de Responsabilidad Medioambiental, se relacionan las actividades cuyos operadores están exentos de la obligación de constituir garantía financiera, señalando las actividades que sí requieren esta obligación: las sujetas a la aplicación de la Ley 16/2002, de prevención y control integrados de la contaminación, a las que aplique el Real Decreto 1254/1999, de accidentes graves en los que intervengan sustancias peligrosas y las relacionadas con residuos mineros clasificadas como categoría A según el Real Decreto 975/2009. Por exclusión, el resto de actividades no precisarían constituir garantía financiera ni de comunicación de la misma a la autoridad competente.

El cálculo de la garantía financiera obligatoria debe partir, como se prevé en el artículo 24.3 de la Ley 26/2007, de un análisis de riesgos ambientales, cuyo alcance y contenido se desarrolla en el Reglamento de Responsabilidad Medioambiental. Mediante este nuevo Real Decreto 183/2015 se modifica el artículo 33 del citado reglamento introduciendo un nuevo método que simplifica notablemente al operador el proceso de fijación de la garantía financiera, en coherencia, no obstante, con el procedimiento anterior. Este nuevo procedimiento consiste, básicamente, en que el operador identifique los escenarios accidentales y su probabilidad de ocurrencia y, posteriormen-
sector transporte en consonancia, en particular, con lo establecido en las conclusiones del Consejo Europeo, de octubre de 2014, donde se subraya la importancia de reducir las emisiones de gases de efecto invernadero y los riesgos de dependencia de los combustibles fósiles en el sector transporte, así como de la mayor participación de las energías renovables en línea con los compromisos dentro de la Unión Europea de que en cada Estado miembro la cuota de energía procedente de fuentes renovables en todos los tipos de transporte en 2020 sea, como mínimo, equivalente al 10% del consumo final de energía en el transporte en dicho Estado miembro, se ha adoptado el Real Decreto 1085/2015 cuyo objeto es el de introducir medidas relacionadas con el fomento de la utilización de los biocarburantes y otros combustibles renovables con fines de transporte, así como la incorporación parcial a la legislación española de la Directiva 2015/1513/UE, relativa a la calidad de la gasolina y el gasóleo y la Directiva 2009/28/CE relativa al fomento del uso de energía procedente de fuentes renovables.

Para alcanzar los objetivos relativos al uso de energías renovables establecidos en la normativa europea, la Ley 11/2013, de 26 de julio, de medidas de apoyo al emprendedor y de estimulo de crecimiento y de la creación de empleo, faculta al Gobierno a regular objetivos de venta o de consumo de biocarburantes con fines de transporte, pudiendo, asimismo, modificar los objetivos regulados, así como establecer objetivos adicionales, en función de la evolución del sector de los biocarburantes y sus distintos tipos, los progresos alcanzados en el consumo de electricidad procedente de fuentes renovables en el transporte y de la normativa comunitaria que se establezca en materia de objetivos de energía renovable en el transporte y en el consumo final bruto de energía.

El Real Decreto 1085/2015 establece objetivos globales anuales de venta o consumo mínimos de biocarburantes, sin restricciones por producto, de manera que los sujetos obligados tengan flexibilidad para alcanzarlo a través de certificados de biocarburantes en diésel o en gasolina, indistintamente. Estos objetivos de venta o consumo de biocarburantes son los porcentajes de las ventas o consumo de los mismos sobre el total de gasolina o gasóleo vendidos o consumidos con fines de transporte, en contenido energético, incluidos los biocarburantes.

En la Disposición adicional primera del real decreto se establecen estos porcentajes, de modo que para el año 2016 el objetivo anual mínimo obligatorio de venta o consumo de biocarburantes es del 4,3 por ciento (4,5 por ciento en el primer semestre y 4,1 por ciento en el segundo semestre), y para los años 2017, 2018, 2019 y 2020, los objetivos son del 5 por ciento, 6 por ciento, 7 por ciento y 8,5 por ciento, respectivamente.

El Real Decreto 1085/2015 recoge el objetivo previsto en la Directiva 2015/1513/UE donde se establece que, para el cómputo en el objetivo de energías renovables en el transporte, el porcentaje de biocarburantes producidos a partir de cereales y otros cultivos ricos en almidón, de azúcares, de oleaginosas y de otros cultivos plantados en tierras agrícolas como cultivos principales fundamentalmente con fines energéticos, no podrá superar el 7 por ciento. Por otra parte, el real decreto establece que, por orden del Ministerio de Industria, Energía y Turismo, previo informe de la Comisión Delega-
da del Gobierno para Asuntos Económicos, se es-

tablecerá, antes del 6 de abril de 2017, un objetivo
de venta o consumo de biocarburantes avanzados,
el listado de los que tengan esta consideración, así
como el factor multiplicador del contenido ener-
gético de cada uno de ellos, para el cumplimiento,
en su caso, de los objetivos regulados.

Esta norma entró en vigor 6 de diciembre de 2015,
salvo los artículos 1 a 3, y la disposición adicional
primera, que lo hicieron el día 1 de enero de 2016,
así como la disposición adicional tercera y la dis-
posición final segunda que lo hicieron a los sesen-
ta días de la publicación de este Real Decreto en
el BOE.
10. INVESTIGACIÓN Y DESARROLLO EN EL SECTOR ENERGÉTICO
La Secretaría de Estado de Investigación, Desarrollo e Innovación (SEIDI) perteneciente al Ministerio de Economía, Industria y Competitividad es el órgano de la Administración General del Estado encargado de la propuesta y ejecución de la política del Gobierno en materia de investigación científica y tecnológica, del desarrollo e innovación en todos los sectores, así como de la coordinación de los organismos públicos de investigación de titularidad estatal y de asegurar la coherencia y la coordinación del fomento de la I+D+i en el territorio de España.

Además, cuenta como principales órganos centrados en la ejecución propiamente dicha con los Organismos Públicos de Investigación, caso del CIEMAT, adscritos directamente a la SEIDI.

10.1. CONTEXTO EUROPEO, SET PLAN

España está inmersa dentro, del marco europeo, en una trasformación energética que siendo efectiva en términos de costes, permita cumplir con los objetivos europeos de reducción de emisión de gases de efecto invernadero y descarbonización de la economía, conforme a lo previsto en la Estrategia Europa 2020 y su iniciativa emblemática «Una Europa que utilice eficazmente los recursos», asegurando el suministro y crecimiento económico de Europa, y en el que uno de los pilares fundamentales es la Investigación y la innovación.

En todo este proceso tiene un papel principal el Plan Estratégico de Tecnología Energética (SET Plan), así en septiembre de 2015 la Comunicación de SET Plan propone 10 acciones claves en línea con las prioridades de la Unión de la Energía y su 5º pilar en materia de investigación, innovación y competitividad. La propuesta busca un cambio definitivo del concepto del sistema energético europeo, proponiendo un sistema integrado que va más allá de los silos de las tecnologías energéticas como había sido hasta ahora.

Desde entonces y especialmente de manera importante durante 2016 se ha puesto en marcha un sistema participativo en el marco del SET Plan que ha llevado a la definición y el establecimiento de unos objetivos concretos para cada una de las
10 acciones propuestas, contando para ello como actores principales con los EM, la industria y los centros de investigación.

Los objetivos fijados persiguen acelerar la descarbonización de la economía y situar a Europa como líder mundial en renovables mediante a una reducción de costes, una mejora de sus prestaciones técnicas y eficiencia energética, con el propósito último de mejorar la competitividad y crecimiento económico y empleo en Europa. En este sentido las 10 acciones que se proponen podrán contribuir de forma rápida a conseguir los objetivos establecidos en materia de energía y clima 2020 y 2030.

De entre las 10 acciones, las dos primeras tienen como objetivo el que Europa sea número 1 en renovables, persiguen el desarrollo de la nueva generación de tecnologías renovables y su integración en el sistema energético de una manera eficiente y competitiva en términos de costes (off-shore wind, nueva generación de fotovoltaica, energía solar de concentración, geotérmica profunda y oceánica); las acciones 3 y 4 están orientadas al diseño del futuro sistema energético de la UE, las ciudades inteligentes y el papel de los consumidores en el centro del sistema energético; las acciones 5 y 6 están en la eficiencia energética (eficiencia energética en edificios: nuevos materiales y tecnologías, calor y frío en edificios; hacer que la industria de la UE más competitiva y energéticamente menos intensiva); las acciones 7 y 8 están centradas en los temas de transporte sostenible (baterías para e-movilidad y almacenamiento estacionario y, combustibles renovables para transporte y bioenergía); la acción 9 está dirigida a la captura, el almacenamiento y el uso de CO2; y la acción 10 incrementar la seguridad en el uso de la energía nuclear.

En este proceso de unir esfuerzos entre la Unión Europea, los Estados miembros, la industria y la comunidad investigadora, y como consecuencia de esta nueva estrategia de I+D, surgen las Plataformas Tecnológicas y de Innovación (ETIPs), con el objetivo de apoyar la aplicación del SET Plan. Las estructuras de gobierno de las ETIPs se simplificaron en 2016, fusionando las 6 iniciativas industriales europeas con las 8 plataformas tecnológicas europeas para dar lugar a 9 ETIPs, que han estado directamente involucradas en la definición de los objetivos de las 10 acciones prioritarias.

Uno de los objetivos centrales del SET Plan ha sido la Coordinación entre los países participantes en búsqueda de una mejor alineación de nuestros programas nacionales. Entre los instrumentos utilizados se han puesto en marcha 9 ERA-NETs Cofund, para dar respuesta a las acciones.

Tras la fijación de objetivos para cada acción, se han creado grupos temporales liderados por uno o más países y co-liderados por la industria con el objetivo de definir para cada uno de las acciones planes de implementación con acciones concretas para poder cumplir con los objetivos fijados. Estas acciones se implementarán a nivel nacional y aquellas en las que se justifique el valor añadido de la UE se considerará potencialmente elegible para financiación a nivel europeo. Por tanto los planes de implementación deberán describir el trabajo requerido mediante la determinación de herramientas, por quién y por cuándo, y en todo momento será necesario supervisar el progreso.
El proceso. En concreto España está liderando el grupo temporal de Energía Solar de Concentración como parte de las acciones 1 y 2, y participa con distinto grado de implicación en los restantes grupos temporales.

Toda la información del proceso queda recogida en la página web de SETIS, https://setis.ec.europa.eu

Para llevar a cabo todo este proceso que ha sido y sigue siendo muy demandante con más de una reunión por mes, a nivel nacional ha sido esencial una buena coordinación con los actores nacionales para poder definir las posiciones a trasladar, identificar los intereses y los apoyos a las diferentes acciones. Así, han tenido un papel principal los dos Ministerios directamente involucrados en la representación en SET Plan, MINETAD y MEIC, en el primer caso contando con el soporte de IDAE y en el segundo con el papel inestimable del CDTI; las bien estructuradas plataformas tecnológicas nacionales bien engarzadas en las ETIPS, y por supuesto los centros de investigación y sus grupos para cada una de las acciones.

A continuación, se incluye un resumen de la actividad de I+D+I llevada a cabo por la Secretaría de Estado en el año 2016 a través de sus diferentes unidades.

10.1.1. Agencia Española de Investigación

La AEI cuenta con programas específicos para la ejecución de la política de I+D+i, en concreto, el Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia, Subprograma Estatal de Generación del conocimiento; el Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad; y por último el Programa Estatal de Retos-Colaboración.

A continuación, se enumeran las principales acciones llevadas a cabo en el marco de los tres programas en materia de financiación de acciones relacionadas con energía.

Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia

La finalidad de las ayudas convocadas es:

1. Las actuaciones objeto de ayuda tienen como finalidad promover la generación de cono-
cimiento científico sin orientación temática previamente definida y la investigación de calidad, evidenciada tanto por su contribución a la solución de los problemas sociales, económicos y tecnológicos como por la publicación de sus resultados en foros de alto impacto científico y tecnológico o la internacionalización de las actividades.

2. Pretenden contribuir a la consolidación de equipos de investigación con tamaño suficiente y masa crítica necesaria para afrontar los desafíos que la investigación española tiene en el contexto del Espacio Europeo de Investigación, fomentando la participación de equipos de investigación amplios y con un elevado nivel de dedicación a cada actuación. Sin renunciar al objetivo anterior, también se pretende apoyar líneas de investigación propias, innovadoras y prometedoras desarrolladas por jóvenes investigadores que se incorporan al sistema de I+D+i.

3. Se potencian los proyectos coordinados que hagan posible la creación de esquemas de cooperación científica más potentes, de modo que permitan alcanzar objetivos que difícilmente podrían plantearse en un contexto de ejecución más restringido.

4. Se pretende financiar proyectos de investigación que sean relevantes, ambiciosos, con alto impacto socioeconómico y de clara proyección internacional, evitando la fragmentación de grupos de investigación y fomentando las sinergias y la asociación de equipos en un proyecto único.

Los beneficiarios de estas ayudas son: Organismos Públicos de Investigación, Universidades públicas, sus institutos universitarios y las universidades privadas con capacidad y actividad demostrada en I+D; otros centros públicos de I+D dependientes o vinculados a la Administración General del Estado o a las Administraciones públicas territoriales, Centros tecnológicos de ámbito estatal, entidades públicas y privadas sin ánimo de lucro que tengan como actividad principal I+D.

Las ayudas consisten en subvenciones con cargo a los presupuestos generales del estado, que podrán ser cofinanciadas por el Fondo Europeo de Desarrollo Regional (FEDER) y en anticipos reembolsables FEDER, de acuerdo a su definición en las bases reguladoras.

El total de financiación concedida en proyectos de temáticas afines a Energía en este Programa Estatal es de 1.869.000€ que corresponden a un total de 17 proyectos, en la tabla se indica la financiación y número de proyectos financieros en las diferentes temáticas:

<table>
<thead>
<tr>
<th>Temáticas</th>
<th>Financiación (€)</th>
<th>Nº de Proyectos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redes eléctricas</td>
<td>536.877</td>
<td>6</td>
</tr>
<tr>
<td>Solar</td>
<td>408.133</td>
<td>3</td>
</tr>
<tr>
<td>Hidrógeno</td>
<td>356.520</td>
<td>2</td>
</tr>
<tr>
<td>Almacenamiento de Energía</td>
<td>217.800</td>
<td>2</td>
</tr>
<tr>
<td>Eficiencia energética</td>
<td>181.500</td>
<td>1</td>
</tr>
<tr>
<td>Energía nuclear</td>
<td>111.320</td>
<td>1</td>
</tr>
<tr>
<td>Eólica</td>
<td>108.900</td>
<td>1</td>
</tr>
<tr>
<td>Pilas de combustible</td>
<td>48.400</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.869.450</td>
<td>17</td>
</tr>
</tbody>
</table>
En general la mayoría de estos proyectos están relacionados con investigación básica en el desarrollo de materiales aplicables para Energía Solar y con el desarrollo de modelos para el control y diseño de redes eléctricas, cuyos resultados suponen un avance del conocimiento en estas temáticas concretas.

Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad

El Programa Estatal de I+D+I Orientada a los Retos de la Sociedad se desarrolla teniendo en cuenta que cada uno de los retos constituye parte esencial de las prioridades científico-técnicas y sociales que han de orientar las actividades de investigación básica de los agentes del Sistema Español de Ciencia, Tecnología e Innovación en los próximos años. La descripción de los Retos de la Sociedad se encuentra de manera no exhaustiva en el Plan Estatal de I+D+I.

Se considera que las actuaciones objeto de esta convocatoria, consistentes en la realización de proyectos de I+D+I, son el mecanismo apropiado para la realización de actividades que impliquen el incremento de los conocimientos científicos y tecnológicos mediante la promoción de actividades de investigación con orientación específica hacia los grandes retos de la sociedad española; la salud, el envejecimiento, la aplicación y defensa de los principios de inclusión de los segmentos más frágiles de nuestra sociedad, la sostenibilidad medioambiental, el abastecimiento energético, la biodiversidad, la transformación de nuestros sistemas políticos y sociales y la seguridad de nuestros ciudadanos son, en esencia, grandes retos globales de la sociedad. El fomento de la I+D+I orientada a los retos de la sociedad surge de la necesidad de resolución de los problemas planteados en la sociedad española guiando, a través de esta convocatoria, la investigación fundamental científica y técnica hacia los ocho grandes retos identificados en la Estrategia Española de Ciencia y Tecnología y de Innovación:

2. Seguridad, calidad alimentaria; actividad agraria productiva y sostenible; sostenibilidad de recursos naturales, investigación marina y marítima.
3. Energía segura, eficiente y limpia.
4. Transporte inteligente, sostenible e integrado.
5. Acción sobre el cambio climático y eficiencia en la utilización de recursos y materias primas.
6. Cambios e innovaciones sociales.
7. Economía y sociedad digital.
8. Seguridad, protección y defensa.

Por su propia naturaleza, estos retos abarcan grandes ámbitos fundamentales que determinan espacios únicos para la colaboración multidisciplinaria e intersectorial, por lo que se espera que las actuaciones a realizar no se circumscriban a un sector o disciplina, sino que se centren en los retos
Asimismo, esta convocatoria procura fomentar la generación de conocimientos científicos y la investigación de calidad contrastada, evidenciada tanto por la relevancia de sus resultados y su contribución al avance de la ciencia y la tecnología, lo que repercutirá en la mejora de las condiciones sociales, económicas y tecnológicas de la sociedad española, como por la publicación de sus resultados en foros de alto impacto científico y tecnológico o la internacionalización de las actividades.

En la convocatoria se pretende también romper la tendencia a la fragmentación de los grupos de investigación, de modo que estos alcancen el tamaño suficiente y la masa crítica necesaria para afrontar los desafíos que la investigación española tiene planteados. Para ello, se fomentarán la asociación y la coordinación de equipos de investigación en proyectos más ambiciosos y la participación de investigadores con un elevado nivel de dedicación a cada proyecto. Igualmente persigue fomentar los proyectos de investigación dirigidos por investigadores jóvenes, con trayectorias científicas prometedoras y que se inicien en la dirección de proyectos.

Concretamente para el Reto 3 Energía segura, eficiente y limpia; las prioridades científico-técnicas y empresariales propuestas en el Plan para este Reto incluyen principalmente los siguientes ámbitos:

- ENERGÍA SOLAR –TERMOELECTRICA, FOTOVOLTAICA Y TÉRMICA: (i) estudio e incorporación de nuevos componentes ligados a la

entendidos como los problemas de la sociedad a los que las actividades de investigación científica y técnica fundamental a desarrollar pretenden dar respuesta.

La investigación en Ciencias Humanas y Sociales se contempla con un carácter transversal y formará parte esencial de la investigación científicotécnica a desarrollar en la búsqueda de estas soluciones a los retos de la sociedad. De igual manera, se consideran tecnologías aplicables a todos los retos las Tecnologías Facilitadoras Esenciales que, en correspondencia con las identificadas en Horizonte 2020, se incluyen en la Estrategia Española de Ciencia y Tecnología y de Innovación: fotónica, micro y nanoelectrónica, nanotecnología, materiales avanzados, biotecnología y tecnologías de la información y las comunicaciones. Estas Tecnologías Facilitadoras Esenciales pueden contribuir a solventar los problemas de los retos sociales tanto de forma individual como teniendo en consideración el beneficio acumulado que pueda resultar de su combinación.

Esta convocatoria pretende estimular la generación de una masa crítica de grupos de investigación de carácter interdisciplinario que sea capaz de movilizar el conocimiento complementario de diversos campos científicos a favor de la solución de los problemas que la sociedad tiene planteados, así como fomentar el liderazgo internacional de los grupos de investigación españoles, en los ámbitos y programas del Espacio Europeo de Investigación, con la vocación de situar la investigación española en un escenario de liderazgo internacional como eje fundamental de desarrollo económico y social.
TRATAMIENTO DE RESIDUOS CON FINES ENERGÉTICOS: (i) tratamiento de residuos (sólidos urbanos y residuos procedentes de los sistemas de tratamiento de agua y de plantas de reciclado, y (ii) estudio y desarrollo de tecnologías de tratamiento de gases.

HIDRÓGENO Y PILAS DE COMBUSTIBLE: (i) producción de H₂; (ii) investigación y desarrollo de las tecnologías del hidrógeno y las pilas de combustible; (iii) almacenamiento y distribución de H₂, y (iv) usos de hidrógeno portátiles y estacionarios.

ENERGÍA MARINA: undimotriz –olas– y maremotriz –mareas–, gradiente de salinidad y marremótérica.

ENERGÍA GEOTÉRMICA: (i) estudio de recursos geotérmicos de alta, media y baja temperatura y (ii) procesos y técnicas para la exploración y evaluación de energía geotérmica.

ENERGÍA NUCLEAR SOSTENIBLE: (i) reactores, seguridad, prevención y diseño de nuevos combustibles; (ii) apoyo a la gestión de los combustibles usados y residuos de alta actividad; (iii) reducción de residuos mediante técnicas de separación y transmutación y (iv) tratamiento y gestión de los residuos de media y baja actividad.

REDUCCIÓN, CAPTURA Y ALMACENAMIENTO DE CO₂: (i) reducción de emisiones de CO₂; (ii) tecnologías de captura de CO₂; (iii) materiales para captura de CO₂ incluyendo materiales de origen renovable –biocarbons–; (iv) conversión y utilización del CO₂ en nuevos productos o materiales; (iv) evaluación emplazamientos para el almacenamiento de CO₂; (v) viabilidad tecnológica de los almacenamientos en condición de energía solar fotovoltaica y desarrollo de procesos avanzados de fabricación de componentes; (iv) implantación de nuevas aplicaciones de la energía solar térmica –integración en edificios, descontaminación, desalación de agua, etc–; (v) desarrollo de sistemas y tecnologías de almacenamiento –industriales y residenciales– de energía, y (vi) gestión e integración de energía renovables en las redes convencionales.

ENERGÍA EÓLICA: (i) desarrollo de componentes y turbinas; (ii) integración en red; (iii) adaptación de aerogeneradores a las condiciones extremas del entorno marino; (iv) materiales de construcción para estructuras -plataformas- y soporte de aerogeneradores en aguas profundas; (v) técnicas de transporte, mantenimiento, operación de las plataformas eólicas, y (vi) caracterización de los emplazamientos incluyendo estudios geotécnicos como medioambientales –físicos y químicos– y de biodiversidad –fauna, especies–, etc.

BIOENERGÍA: (i) producción de biomasa terrestre o marina para aplicaciones en procesos industriales y producción de energía; (ii) siste-
mas de producción de combustibles y tecnologías de conversión para la producción y abastecimiento sostenibles de combustibles sólidos, líquidos y gaseosos obtenidos de la biomasa; (iii) biocombustibles de alto valor añadido, y (iv) producción, almacenamiento y distribución de biocombustibles.

- **REDES ELÉCTRICAS INTELIGENTES:** se apoyará la incorporación de desarrollos tecnológicos tanto en software como en hardware y en aplicación de nuevos materiales y el impulso a sistemas de información y comunicación, sistemas de previsión y optimización, electrónica de potencia, materiales y sensores e integración de recursos y distribución activa.

Las actuaciones comprendidas en la presente convocatoria se ejecutarán por universidades, centros públicos de I+D+I, centros tecnológicos y entidades públicas y privadas sin ánimo de lucro vinculadas a la ciencia, la tecnología, la investigación y la innovación.

Las ayudas consisten en subvenciones con cargo a los presupuestos generales del estado, que podrán ser cofinanciadas por el Fondo Europeo de Desarrollo Regional (FEDER) y en anticipos reembolsables FEDER, de acuerdo a su definición en las bases reguladoras.

El total de financiación concedida en proyectos de las temáticas de Energía dentro de este Plan Estatal fue de 16.872.361€, lo que supone del orden del 9,5% del total financiado en esta convocatoria; en la tabla se indica la financiación y número de proyectos financiados en las diferentes temáticas:

<table>
<thead>
<tr>
<th>Temáticas</th>
<th>Financiación (€)</th>
<th>Nº de Proyectos</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar</td>
<td>3.939.518</td>
<td>27</td>
<td>23%</td>
</tr>
<tr>
<td>Reducción, captura y almacenamiento de CO₂</td>
<td>2.488.970</td>
<td>11</td>
<td>15%</td>
</tr>
<tr>
<td>Almacenamiento de Energía</td>
<td>2.416.007</td>
<td>17</td>
<td>14%</td>
</tr>
<tr>
<td>Redes eléctricas</td>
<td>1.717.111</td>
<td>18</td>
<td>10%</td>
</tr>
<tr>
<td>Pilas de combustible</td>
<td>1.606.880</td>
<td>11</td>
<td>10%</td>
</tr>
<tr>
<td>Eficiencia energética</td>
<td>1.346.367</td>
<td>8</td>
<td>8%</td>
</tr>
<tr>
<td>Bioenergía</td>
<td>703.010</td>
<td>3</td>
<td>4%</td>
</tr>
<tr>
<td>Eólica</td>
<td>469.333</td>
<td>4</td>
<td>3%</td>
</tr>
<tr>
<td>Hidrógeno</td>
<td>430.760</td>
<td>3</td>
<td>3%</td>
</tr>
<tr>
<td>Aprovechamiento de Residuos</td>
<td>376.310</td>
<td>3</td>
<td>2%</td>
</tr>
<tr>
<td>Hídrica</td>
<td>164.360</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>145.200</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Fusión</td>
<td>108.900</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Marina</td>
<td>95.590</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Otros</td>
<td>863.940</td>
<td>7</td>
<td>5%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16.872.356</td>
<td>116</td>
<td>100%</td>
</tr>
</tbody>
</table>

TABLA II. RESULTADOS DE LA CONVOCATORIA RETOS DE LA SOCIEDAD

LA ENERGÍA EN ESPAÑA 2016
Así mismo en la figura se muestra el porcentaje que supone cada una de las temáticas del total subvencionado.

El mayor porcentaje de proyectos están relacionados con Energía Solar, especialmente con el desarrollo de nuevos materiales con mayores prestaciones, así como con la utilización de esta energía solar para temas medioambientales. También es importante la financiación concedida a proyectos relacionados con Reducción, captura y almacenamiento de CO2, tanto referidos a desarrollo de procesos como en temas de almacenamiento marino, etc. En las últimas convocatorias se ha detectado un incremento importante en la investigación relacionada con el almacenamiento de energía, temática que parece que cada vez tiene una mayor importancia y mayores lagunas de investigación.

Programa Estatal de Retos-Colaboración

El Programa Estatal de I+D+I orientada a los Retos de la Sociedad, enmarcado dentro del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, engloba, entre otras, la Convocatoria de RETOS-COLABORACIÓN y la Convocatoria de PLATAFORMAS TECNOLÓGICAS, cuyas principales características y resultados obtenidos en la anualidad 2016 se describen a continuación.

RETOS-COLABORACIÓN es una convocatoria de Colaboración Público-Privada cuyo objetivo es orientar la investigación científica, desarrollada en universidades y organismos públicos de investigación, y la actividad de I+D+I empresarial hacia la resolución de los problemas y necesidades presentes y futuras de nuestra sociedad, en consonancia con los retos contenidos en la Estrategia Española 2013-2020 y en el Plan Estatal 2013-2016, así como con el esquema de la Unión Europea reflejado en «Horizonte 2020». Sus principales características son las siguientes:

- Proyectos de I+D+I de desarrollo experimental, realizados en colaboración entre empresas y agentes de investigación públicos y privados, liderados por la industria y basados en la demanda, movilizadores de la inversión privada, generadores de empleo y con fuerte componente internacional.
Duración entre 2 y 4 años.

Presupuesto mínimo 500.000 €.

En la Convocatoria de 2016 se han financiado un total de 43 proyectos, siendo 33,72 M€ la ayuda total concedida. Esta ayuda incluye subvención para los agentes de I+D públicos y privados, préstamo para las empresas (0,06% de interés y amortización en 10 años, con 3 de carencia y 7 de devolución), y posibilidad de anticipo reembolsable FEDER a los organismos públicos de investigación. La contribución FEDER supone un 85 % en la Comunidad Autónoma de Canarias; 80 % en las Comunidades Autónomas de Andalucía, Principado de Asturias, Castilla-La Mancha, Ceuta, Extremadura, Galicia, Melilla y Murcia; y 50 % en las Comunidades Autónomas de Aragón, Baleares, Cantabria, Castilla y León, Cataluña, Comunidad Valenciana, La Rioja, Madrid, Navarra y País Vasco.

En la Tabla I se pueden ver desglosadas las cantidades en préstamo, subvención y anticipo reembolsable FEDER concedidas al total de los 43 proyectos financiados en la convocatoria 2016, y además se incluye el presupuesto total de estos proyectos y el financiable total considerado para la concesión de la ayuda.

Las líneas temáticas de estos proyectos y la ayuda total concedida en cada línea se presentan en la Tabla II. Destaca el mayor número de proyectos en Energía Eólica (9) seguidos de los proyectos en Redes Eléctricas/Inteligentes (7) y Eficiencia Energética (6). En esta última línea, de Eficiencia Energética, están considerados también los proyectos relacionados con las Ciudades Inteligentes debido a la imposibilidad de separar ambas temáticas. A continuación, siguen los proyectos de Energía Solar, tanto Fotovoltaica como Solar Termoeléctrica con 4 proyectos en cada caso, Bioenergía y Energía Nuclear con 3 cada una, y Almacenamiento de Energía e Hidrógeno y Pilas de Combustible con 2 proyectos cada línea. Por último, como minoritarios, con solo un proyecto en cada caso, figuran Combustibles Fósiles y Tratamiento de Residuos con Fines Energéticos.

Por otra parte, en la Fig. 1 puede verse el número de participantes en los proyectos energéticos financiados y el presupuesto total de los mismos. Se observa que la mayoría de los proyectos tienen dos participantes (una empresa y normalmente una universidad) o tres participantes (en general una empresa, una universidad y un centro tecnológico), aunque también hay un número destacable de proyectos con cinco participantes y hay proyectos con seis e incluso con siete participantes. En cuanto al presupuesto, la mayoría han presentado un presupuesto menor de 1 M€ (28 proyectos), pero también existe un número importante de proyectos (14) con presupuesto entre 1-4 M€, y un proyecto con presupuesto mayor de 4 M€.

Tabla III. Resultados de la Convocatoria Retos Colaboración 2016. Proyectos Financiados en el Reto 3: Energía.

<table>
<thead>
<tr>
<th>Reto 3</th>
<th>Total 2016 - 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGÍA</td>
<td>Financiados Nº</td>
</tr>
<tr>
<td>43</td>
<td>48.875.474</td>
</tr>
</tbody>
</table>
La naturaleza de las entidades participantes se recoge en la Fig. 2. En la parte empresarial casi hay paridad entre Grandes Empresas (24%) y PYMEs (25%), y existen también empresas públicas (2%). En la parte de agentes de I+D, la mayor presencia corresponde a los centros públicos (universidades y Organismos Públicos de Investigación-OPIs).

Respecto a la distribución de la ayuda concedida por Comunidades Autónomas, consecuencia de la razón social de los beneficiarios de los proyectos en cada una de ellas, Fig., destacan claramente Madrid y País Vasco, seguidas de Andalucía, Navarra y Cataluña. A continuación, están Castilla La Mancha, Asturias, Aragón y Comunidad Valenciana, y ya en menor proporción Galicia, Castilla y León y Cantabria.
El resumen de las tres Convocatorias de RETOS COLABORACIÓN que ha habido hasta el momento (2014+2015+2016) se presenta en la Fig.V. En total se han financiado 113 proyectos, siendo 92,5 M€ la ayuda total concedida. Estos grandes proyectos energéticos están en total consonancia con los ámbitos temáticos recogidos en el Plan Estatal de I+D+i, en Horizonte 2020 y en el Strategic En-
gy Technology Plan (SET Plan). Se observan dos grandes bloques, estando en el primero con mayor número de proyectos financiados las temáticas de Energía Eólica, Eficiencia Energética/Ciudades Inteligentes, Redes Inteligentes, Solar Fotovoltaica y Bioenergía. Destaca además en la gráfica que la ayuda total concedida a los proyectos es mayor en Redes Inteligentes que en otras temáticas, a pesar de tener un número menor de proyectos financiados, lo que está motivado por la mayor envergadura y número de socios en los consorcios de este tipo de proyectos de redes eléctricas.

Plataformas Tecnológicas

Las Plataformas Tecnológicas son foros de trabajo en equipo, liderados por la industria, que integran a todos los agentes del sistema Ciencia-Tecnología-Innovación (empresas, centros tecnológicos, organismos públicos de investigación, universidades, centros de I+D, asociaciones, fundaciones, etc...), y que son capaces de definir la visión a corto, medio y largo plazo del sector y de establecer una agenda estratégica en I+D+I.

Entre sus misiones destacan:

- Favorecer la competitividad, la sostenibilidad y el crecimiento del sector industrial y del tejido científico-tecnológico español.
- Ser un mecanismo de transmisión de la I+D+I hacia el mercado nacional e internacional.
- Canalizar la generación de empleo y la creación de empresas innovadoras mediante proyectos y actuaciones.

FIGURA V. TOTAL CONVOCATORIAS RETOS COLABORACIÓN 2014+2015+2016.

Nº DE PROYECTOS FINANCIADOS POR LÍNEAS TEMÁTICAS Y AYUDA TOTAL CONCEDIDA. RETO 3: ENERGÍA

El tamaño de las burbujas se corresponde con la ayuda total concedida (Valor numérico en su interior, M€)
En la actualidad se cuenta en Energía con un total de once Plataformas Tecnológicas en sectores energéticos relevantes para nuestra economía. Son las siguientes:

- Plataforma Tecnológica Española del H2 y de las Pilas de Combustible (www.ptehpc.org).
- Plataforma Tecnológica del Sector Eólico Español. REOLTEC (www.reoltec.net).
- Plataforma Tecnológica Española del CO2 (www.pte-co2.es).
- Plataforma Tecnológica Española de Redes Eléctricas. FUTURED (www.futured.es).
- Plataforma Tecnológica Española de Biomasa. BIOPLAT (www.bioplat.org).
- Plataforma Tecnológica Española de Eficiencia Energética. EE (www.pte-ee.org).
- Plataforma Tecnológica Española de Geotermia. GEOPLAT (www.geoplat.org).
- Plataforma Tecnológica Española Fotovoltaica. FOTOPLAT (http://fotoplatform.org/).
- Plataforma Tecnológica de Energía Nuclear de Fisión. CEIDEN (www.ceiden.es).
- Plataforma Tecnológica de Energía Solar Térmica de Baja Temperatura. SOLPLAT.

Hay que destacar que además de estas Plataformas Energéticas existen dos Grupos Interplataformas formados por plataformas de diferentes sectores, uno relacionado con las Ciudades Inteligentes y otro sobre Almacenamiento Energético (www.futured.es).

10.1.2. Centro para el Desarrollo Tecnológico Industrial (CDTI)

Actividades de financiación del CDTI en el ámbito nacional:

Durante el año 2016 el CDTI ha aprobado en el área de energía 136 operaciones de I+D e innovación desarrolladas por empresas bajo la modalidad de Ayudas reembolsables, parcialmente reembolsables y subvenciones. El conjunto de estas ayudas han dado lugar a una inversión total de 87,62 millones de euros y unos compromisos de aportación pública por valor de 60,48 millones de euros.

a) Financiación directa mediante ayudas reembolsables, parcialmente reembolsables y subvenciones en el sector:

En la siguiente tabla se distribuyen, por tipología, las operaciones financiadas en 2016.

2 La selección de los proyectos para la realización de este análisis parte de la codificación asignada por áreas sectoriales que utiliza el Centro 03: Energía y otros sectores con aplicación en el sector.
Por Comunidades autónomas, el importe de las operaciones aprobadas se concentran en Navarra, Andalucía y País Vasco. Dentro del área sectorial, la I+D+i en fomento de las energías renovables y tecnologías emergentes supone el 71,43% de las operaciones aprobadas, el 74,89% de los compromisos de aportación pública y el 75,44% del presupuesto total de inversión empresarial.
Área Sectorial

<table>
<thead>
<tr>
<th>Área Sectorial</th>
<th>Área Sector Nivel 2</th>
<th>Área Sector Nivel 3</th>
<th>Nº Proyectos</th>
<th>Operaciones</th>
<th>Presupuesto Total (€)</th>
<th>Compromisos de Aportación (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGÍA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimización de las formas y utilizaciones convencionales de la energía.</td>
<td>Investigación y desarrollo tecnológico en poligeneración.</td>
<td>1</td>
<td>1</td>
<td>334.592</td>
<td>242.646</td>
<td></td>
</tr>
<tr>
<td>Optimización de las formas y utilizaciones convencionales de la energía.</td>
<td>Investigación y desarrollo tecnológico para mejorar la eficiencia en el uso final de la energía, con especial atención al sector industrial.</td>
<td>8</td>
<td>8</td>
<td>3.258.717</td>
<td>2.351.548</td>
<td></td>
</tr>
<tr>
<td>Optimización de las formas y utilizaciones convencionales de la energía.</td>
<td>Investigación y desarrollo tecnológico en generación distribuida, transporte y distribución activa.</td>
<td>1</td>
<td>3</td>
<td>2.276.525</td>
<td>988.645</td>
<td></td>
</tr>
<tr>
<td>Optimización de las formas y utilizaciones convencionales de la energía.</td>
<td>Otras contenidos (Optimización de las formas y utilizaciones convencionales de la energía.)</td>
<td>4</td>
<td>4</td>
<td>2.914.753</td>
<td>2.100.728</td>
<td></td>
</tr>
<tr>
<td>Optimización de las formas y utilizaciones convencionales de la energía.</td>
<td>Sin Nivel Asignado</td>
<td>2</td>
<td>2</td>
<td>1.715.988,5</td>
<td>1.404.474</td>
<td></td>
</tr>
<tr>
<td>Fomento de las energías renovables y tecnologías emergentes.</td>
<td>Investigación y desarrollo tecnológico para la evaluación y predicción de recursos de energías renovables.</td>
<td>1</td>
<td>3</td>
<td>1.179.572</td>
<td>637.370</td>
<td></td>
</tr>
<tr>
<td>Fomento de las energías renovables y tecnologías emergentes.</td>
<td>Investigación y desarrollo tecnológico en energía eólica.</td>
<td>10</td>
<td>13</td>
<td>11.302.548</td>
<td>8.414.894</td>
<td></td>
</tr>
<tr>
<td>Fomento de las energías renovables y tecnologías emergentes.</td>
<td>Investigación y desarrollo tecnológico en energía solar.</td>
<td>7</td>
<td>14</td>
<td>9.741.233</td>
<td>5.631.129</td>
<td></td>
</tr>
<tr>
<td>Fomento de las energías renovables y tecnologías emergentes.</td>
<td>Investigación y desarrollo tecnológico en biomasa y biocombustibles.</td>
<td>5</td>
<td>5</td>
<td>1.916.424</td>
<td>1.437.304</td>
<td></td>
</tr>
<tr>
<td>Fomento de las energías renovables y tecnologías emergentes.</td>
<td>Investigación y desarrollo tecnológico en otras energías: Marinas, geotérmica y minihidráulica.</td>
<td>1</td>
<td>1</td>
<td>943.137</td>
<td>564.420</td>
<td></td>
</tr>
<tr>
<td>Fomento de las energías renovables y tecnologías emergentes.</td>
<td>Otras contenidos (Fomento de las energías renovables y tecnologías emergentes.)</td>
<td>1</td>
<td>1</td>
<td>1.539.413</td>
<td>1.308.500</td>
<td></td>
</tr>
<tr>
<td>Fomento de las energías renovables y tecnologías emergentes.</td>
<td>Sin Nivel Asignado</td>
<td>4</td>
<td>8</td>
<td>5.632.146</td>
<td>3.161.250</td>
<td></td>
</tr>
<tr>
<td>TOTAL ENERGÍA</td>
<td></td>
<td></td>
<td>45</td>
<td>63</td>
<td>42.755.048,5</td>
<td>28.222.909,52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Área Sectorial</th>
<th>Área Sector Nivel 2</th>
<th>Área Sector Nivel 3</th>
<th>Nº Proyectos</th>
<th>Operaciones</th>
<th>Presupuesto Total (€)</th>
<th>Compromisos de Aportación (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medioambiente - Ecoinnovación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevención de la Contaminación</td>
<td>Mejora de procesos y tecnologías energéticas. Eficiencia energética</td>
<td>1</td>
<td>1</td>
<td>483.315</td>
<td>362.484,75</td>
<td></td>
</tr>
<tr>
<td>Prevención de la Contaminación</td>
<td>Sin Nivel Asignado</td>
<td>4</td>
<td>4</td>
<td>1.258.735</td>
<td>978.077,</td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td></td>
<td>3</td>
<td>5</td>
<td>3.958.939</td>
<td>3.025.007,</td>
<td></td>
</tr>
<tr>
<td>TOTAL MA y Eco</td>
<td></td>
<td></td>
<td>8</td>
<td>10</td>
<td>5.800.627,</td>
<td>4.365.568,75</td>
</tr>
</tbody>
</table>

TOTAL ENERGÍA: 45 proyectos, 63 operaciones, presupuesto total de 42.755.048,5 €, compromisos de aportación de 28.222.909,52 €.

TOTAL MA y Eco: 8 proyectos, 10 operaciones, presupuesto total de 5.800.627, presupuesto total de 4.365.568,75 €.
Durante el año 2014-2015 se abrieron las primeras convocatorias del nuevo Programa Marco de Investigación e Innovación de la Unión Europea «Horizonte 2020», establecidos en programas bienales. Este programa, además de continuar con algunas de las características de su predecesor, ha supuesto un cambio en su filosofía, persiguiendo más la llegada al mercado de los resultados de la I+D y centrándose en la solución de retos sociales europeos. De hecho, el programa heredero del de Energía del séptimo Programa en Horizonte 2020 se encuadra dentro del pilar de los Retos Sociales y se titula «Energía, limpia, segura y eficiente».

Este nuevo programa no ha significado un cambio en el desarrollo del European Strategic Energy Tecnology Plan (SET Plan) como pilar estratégico

Programa Marco de la Unión Europea, «HORIZONTE 2020»

SECTOR

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>EMPRESA QUE LIDER</th>
<th>Empresas en cartera</th>
<th>Fondos recibidos por las participadas (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía-Medio Ambiente, EMA</td>
<td>AGBAR (Coinversión)</td>
<td>3</td>
<td>2.327.000</td>
</tr>
<tr>
<td>Energía-Medio Ambiente, EMA</td>
<td>Iberdrola (Coinversión)</td>
<td>2</td>
<td>1.200.000</td>
</tr>
<tr>
<td>Energía-Medio Ambiente, EMA</td>
<td>Repsol (Coinversión)</td>
<td>2</td>
<td>2.316.082</td>
</tr>
</tbody>
</table>

Programa «INNVIERTE»

La gestión del Programa se instrumenta a través de la Sociedad de Capital Riesgo INNVIERTE ES, S.A., S.C.R, cuyo fin es potenciar la inversión de capital riesgo en el sector tecnológico español, impulsando empresas innovadoras o de base tecnológica (principalmente pequeñas y medianas empresas) y facilitando la participación estable del capital privado a largo plazo mediante la inversión en vehículos público-privados.

Las inversiones de los vehículos de capital riesgo apoyados por INNVIERTE en el área de energía y medio ambiente, a diciembre de 2016, son:

Áreas Sectoriales

Tecnologías de la Información y Comunicaciones

- Aplicaciones, servicios y contenidos sectoriales: Energía.

<table>
<thead>
<tr>
<th>Área Sectorial</th>
<th>Área Sector Nivel 2</th>
<th>Área Sector Nivel 3</th>
<th>Nº Proyectos</th>
<th>Operaciones</th>
<th>Presupuesto Total (€)</th>
<th>Compromisos de Aportación (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tecnologías de la Información y Comunicaciones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicaciones, servicios y contenidos sectoriales</td>
<td>Energía</td>
<td></td>
<td>30</td>
<td>35</td>
<td>15.005.109</td>
<td>10.080.367</td>
</tr>
<tr>
<td>TOTAL TIC aplicaciones</td>
<td></td>
<td></td>
<td>30</td>
<td>35</td>
<td>15.005.109</td>
<td>10.080.367</td>
</tr>
</tbody>
</table>

Sectores industriales

<table>
<thead>
<tr>
<th>Área Sectorial</th>
<th>Área Sector Nivel 2</th>
<th>Área Sector Nivel 3</th>
<th>Nº Proyectos</th>
<th>Operaciones</th>
<th>Presupuesto Total (€)</th>
<th>Compromisos de Aportación (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienes de equipo Sin Nivel Asignado</td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>4.587.751</td>
<td>3.405.196</td>
</tr>
<tr>
<td>Materiales Sin Nivel Asignado</td>
<td></td>
<td></td>
<td>3</td>
<td>9</td>
<td>8.067.741</td>
<td>6.035.007</td>
</tr>
<tr>
<td>Otros Sin Nivel Asignado</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>2.197.004</td>
<td>1.446.556</td>
</tr>
<tr>
<td>TOTAL Sec.Ind.</td>
<td></td>
<td></td>
<td>15</td>
<td>28</td>
<td>24.063.060</td>
<td>17.814.631</td>
</tr>
</tbody>
</table>
Dentro del Programa Horizonte 2020, y a finales de su segundo año de desarrollo, 2015, se aprobó oficialmente el segundo programa de trabajo bienal correspondiente a los años 2016 y 2017.

Continuista con su predecesor, este programa 2016-2017 muestra sin embargo unas diferencias en estructura reseñables respecto al anterior. Una de ellas es la de dar un espacio propio a los consumidores dentro de las áreas de eficiencia energética, lo que da una idea de la relevancia que toma el consumidor, al que se le da ahora un papel activo en el sistema energético. Otro cambio a nivel de estructura, es que el topic de Smart Cities and Communities se recoge en la convocatoria «Smart and Sustainable Cities» en un documento de programa de trabajo distinto del de Energía: programa de trabajo «Cross Cutting activities». Esto se debe a que esta convocatoria (que también recoge actividades de ciudades sostenibles con soluciones basadas en la naturaleza), comparte actividades y presupuestos procedentes de otras áreas de Horizonte 2020 como transporte y Tecnologías de la Información (TIC). En este libro, sin embargo, seguiremos tratándolo a todos los efectos como parte del programa de trabajo de este reto social.

El SET Plan, en el marco del H2020, ha evolucionado hacía un concepto más integrado de las tecnologías energéticas, e identifica una serie de prioridades en términos de investigación e innovación en torno a una serie de retos del sistema energético. La comunicación «Energy Union» lanzada por la comisión en febrero del 2015 establece 5 pilares básicos para conseguir los objetivos de impulsar la seguridad energética, la sostenibilidad y la competitividad

- Seguridad energética, solidaridad y confianza
- Un mercado europeo de la energía plenamente integrado
- Eficiencia energética como contribución a la moderación de la demanda
- Descarbonización de la economía
- Investigación, innovación y competitividad

Dentro del quinto pilar, el SET Plan se articula como herramienta para conseguir a través de la investigación, desarrollo e innovación alcanzar los objetivos marcados en la Energy Union, y el reto social de «energia segura, limpia y eficiente» dentro del H2020 como instrumento clave para progresar en dichos objetivos, y contribuir a la transformación del sistema energético europeo actual.

Dentro del Programa de trabajo 2016-2017, y durante el año 2016, el Programa de Energía ha lanzado convocatorias en las tres áreas en las que se estructura: Eficiencia Energética, Energía baja en Carbono y Ciudades Inteligentes. En los datos facilitados a continuación se recogen todas las convocatorias que abrieron en el programa de trabajo 2016 en esas tres áreas, salvo una convocatoria de Eficiencia Energética para actividades de market-
En el año 2016, y en concreto en el área de Eficiencia Energética se han adjudicado 34,77 millones de Euros, de los que 3,49 han sido captados por entidades españolas, lo que significa un 10,1% respecto al total de países y un 11,76 respecto a los estados miembros de la UE28. Con estos resultados España ha sido el segundo país que más fondos ha captado de esta convocatoria de Eficiencia Energética en 2016 por detrás de Italia (16,1%), y por delante de Reino Unido (9,4%) y Alemania (8,6%).

La parte del Programa que más presupuesto ha adjudicado ha sido la referida como Energía baja en carbono que, durante 2016, ha financiado, entre otros, proyectos de investigación y demostración en energías renovables y biocombustibles, proyectos de investigación y demostración en integración de renovables, redes inteligentes y sistemas de almacenamiento a nivel de la red de distribución y de la red de transmisión eléctrica, y proyectos de investigación en tecnologías de captura, almacenamiento, transporte y usos de CO2, que en su conjunto ha supuesto una financiación total de 392 Millones de Euros. De esta cantidad, 32,6 Millones de euros fueron adjudicados a entidades españolas, lo que supone un 8,3% del total (9,08 UE) situando a España en el quinto puesto en captador de fondos por detrás de Alemania (15,6%), Reino Unido (10,8%), Italia (10,2), y Francia (9,6%).

Por último, se incluye dentro del programa de Energía 2016 la Convocatoria de Ciudades y Comunidades Inteligentes, que sigue la línea de grandes proyectos de demostración (proyectos FARO) que integran tecnologías innovadoras en el área de energía, transporte e TIC en un entorno urbano. En estos proyectos se pide tres ciudades, que serán los lugares de demostración, entidades proveedoras y/o desarrolladoras de las soluciones y otro pequeño número de ciudades (al menos tres followers) en las que no se llevarán a cabo actuaciones, pero que participarán en los proyectos como aseguradoras de la transferibilidad de los resultados. Se trata de proyectos muy grandes tanto en presupuesto (18-20 m€ de aportación CE) como en número de socios (casi 20 de media). En estos proyectos es vital la involucración de las autoridades públicas que suelen contar con planes urbanos de sostenibilidad aprobados previamente a la preparación de estas propuestas. Cabe destacar en esta convocatoria del 2016 el cambio de reglas con respecto a las del 2014 y 2015 en cuanto a las actividades que podían recibir financiación de la CE. En esta convocatoria del año 2016 no se han financiado costes de construcción y rehabilitación de viviendas, inversiones en renovables, compra de vehículos, compra de herramientas TIC, financiándose sólo aquellos aspectos innovadores que transforman la ciudad en inteligente (almacenamiento, integración de sistemas de gestión inteligente, parte innovadora de las renovables,…). Estos cambios han supuesto una bajada significativa de participación en esta convocatoria, tanto a nivel de propuestas presentadas como a nivel de participantes. En cuanto a resultados, en la convocatoria del 2016, se han financiado sólo dos proyectos, uno de ellos liderado por la Fundación Cartif. En esta convocatoria no hay ciudades faro con demostración en Espa-
Las entidades españolas han recibido una financiación de 3,85 Millones de Euros que supone un 6,6% (6,56% UE) de los 36,34M€ adjudicados. Este porcentaje de financiación ha sido inferior al conseguido en otras convocatorias pasadas, debido principalmente a que no ha habido presencia de ciudades españolas en los dos proyectos aprobados y debido al cambio en las normas de financiación de actividades dentro de estos proyectos. En el ratio de países de la Unión Europea, estamos en la séptima posición.

De manera global, el año 2016 ha supuesto una gran participación de entidades españolas en este programa de Energía, aunque menor que en años anteriores. De los casi 463 Millones de Euros adjudicados, prácticamente 38,5 irán a entidades españolas (8,3%) situando a España en quinta posición por detrás de Alemania (15%), Reino unido (10,7%), Italia (10%), y Francia (9,6%). La nueva filosofía de Horizonte 2020, con un marcado sesgo hacia la innovación y la llegada a mercado ha tenido su reflejo en la distribución de los perfiles de los participantes españoles claramente dominada por las empresas (50%), seguidas por los centros tecnológicos (20%), centros de investigación, (9,7%) y las Universidades (8,1%).

Por Comunidades Autónomas, los participantes españoles se centran principalmente en las siguientes comunidades: Madrid (24%), País Vasco (22,7%), Comunidad Valenciana (16%), Cataluña (13%) y Navarra (9,7%).

Los participantes más destacados de este año han sido, Atos Spain, S.A. y ETRA I+D, S.A., en el área de redes eléctricas inteligentes; Adwen Offshore, S.L e Iberdrola Renovables Energía, S.A., en las tecnologías de wind-offshore; y Cobra Instalaciones y Servicios, S.A. y Fundación Tekniker, en tecnologías de Solar de Concentración. Otras entidades destacadas han sido Fundación Cener-Ciemat, Fundación Tecnalia, Zabala Innovation Consulting, SA, y el centro tecnológico AIMPLAS.

En el apartado de la ejecución queríamos destacar a:

El Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT). Actividades de I+D y Tecnológicas

El CIEMAT es un Organismo Público de Investigación adscrito al MEIC a través de la Secretaría de Estado de Investigación, Desarrollo e Innovación.

Desde 1951, como Junta de Energía Nuclear (JEN), y a partir de 1986 como CIEMAT, lleva a cabo proyectos de I+D+i sobre las fuentes de energía (renovables, fusión, fisión y combustibles fósiles), su impacto en el medio ambiente, el desarrollo de nuevas tecnologías, la física de altas energías y la biomedicina. La I+D+i se complementa con actividades de formación, de transferencia de tecnología, la prestación de servicios técnicos, el asesoramiento a las distintas administraciones y la representación de España en diversos foros internacionales.

Su equipo humano de 1,367 personas está diversificado tecnológicamente y geográficamente. Su sede está en Madrid y cuenta con otros cinco centros: la Plataforma Solar de Almería (PSA), gran insta-
El CIEMAT tiene una relevante participación en comités, comisiones, grupos de trabajo, plataformas tecnológicas, asociaciones, redes, etc., a través de los expertos de la talla y el prestigio de los que trabajan en el CIEMAT. En el ámbito de la energía, el número total de comités en los que el CIEMAT participa es de 298. De ellos, el 64% (190) son de ámbito internacional.

El 28% (82) son comités estratégicos (de alto nivel, con carácter político o estratégico) y científicos o técnicos de alto nivel, lo que nos da la oportunidad de contribuir en la definición de la política científica. Respecto al tipo de los comités, los más numerosos son los de carácter consultivo, (49%). Este alto porcentaje muestra cómo los expertos del CIEMAT están muy demandados entre las organizaciones o entidades que requieren consejo en el ámbito de nuestro conocimiento.

Aunque la fama del Centro ya venía precedida por su experiencia acumulada de más de 60 años de estudio sobre la energía nuclear (27% de los comités), hoy en día muchos de los comités en los que el CIEMAT tiene presencia cubren un espectro de temas más amplio.

El CIEMAT tiene una fuerte implicación en el desarrollo y la actividad de ALINNE, surgida en 2011, para coordinar a todos los actores nacionales dentro del campo de la innovación relacionada con la energía para reforzar el liderazgo internacional de España.

En 2016, se han celebrado dos reuniones del Comité Ejecutivo, presidido por Director General del CIEMAT y reuniones ordinarias de su Comité Delegado de Estrategia.

Tras la elaboración y presentación del informe «Análisis del Potencial de Desarrollo Tecnológico de las Tecnologías Energéticas (ejercicio APTE)», ALINNE ha completado el proceso de interacción con las diferentes plataformas tecnológicas (PTAs) y asociaciones en el ámbito de la tecnología energética, de cara a la optimización del ejercicio APTE y su repetición en 2017. A tal efecto, se celebraron nueve reuniones. Este ejercicio, único hasta el momento, supone una herramienta útil para la elaboración de estrategias en el ámbito de la tecnología energética, el informe al que ha dado lugar puede consultarse en http://www.alinne.es. Además, el Comité de Estrategia comenzó un proceso de elaboración de conclusiones y recomendaciones sobre el ejercicio APTE para su presentación a la Administración.

En relación a la preparación de APTE 2017, se comenzó la revisión de la metodología a utilizar, incidiendo en tres aspectos principales: la optimización y reducción del número de indicadores, la generación de una base de datos propia, para el uso común de las PTAs que realicen el ejercicio, y la mejora del proceso de subjetividad compartida.
Esta revisión ha producido, por el momento, dos informes preliminares.

De acuerdo a los planes de trabajo establecidos y con vistas a la posible internacionalización del ejercicio APTE, se presentó el mismo a autoridades de la CE. La primera presentación se realizó en la sede de la Comisión Europea en Madrid, a D. Miguel Arias Cañete, Comisario Europeo de Acción por el Clima y Energía. Tras dicha presentación y respondiendo a los aspectos de interés destacados por el Comisario, ALINNE produjo un documento con aportaciones y sugerencias a la resolución de dichos aspectos, transmitiéndolo por carta. La segunda presentación tuvo lugar en Bruselas ante una delegación de la Dirección General de Investigación e Innovación de la Comisión Europea, presidida por su Director de Energía, Mr. András Siegler. En esta presentación se hizo hincapié en la potencial contribución de ALINNE a la mejora de mecanismos e instrumentos de apoyo para la introducción de las nuevas tecnologías energéticas en el mercado.

ALINNE ha comenzado un estudio de la distribución regional por CCAA de capacidades e infraestructuras de las tecnologías energéticas, un estudio de las propuestas de RIS 3 en energía, presentadas por las CCAA y el apoyo a la representación española en el SET Plan.

Merece la pena destacar el establecimiento, por parte de ALINNE, en colaboración con las PTAs del sector, de un nuevo instrumento, denominado Iniciativas Tecnológicas Prioritarias, consistente en todo aquel desarrollo tecnológico de gran calado que le permita a la tecnología española, en un horizonte temporal no excesivamente lejano, desarrollar tejido industrial y cubrir una cuota de mercado tecnológico nacional y/o internacional que, por su retorno económico y en otros tangibles e intangibles de alto valor intrínseco (empleo, sostenibilidad en sentido amplio, etc...), le suponga a España unos beneficios tales que justifiquen una dedicación focalizada y sostenida hacia la misma en recursos económicos y capital humano y el desarrollo y aseguramiento de un marco favorable para su implantación.

Además de las actividades mencionadas, miembros de ALINNE han participado representando a la Alianza en jornadas y reuniones, relacionadas con su temática, como: IX Asamblea General de REOLTEC (Madrid); SUSTAINABLE ENERGY WEEK (Bruselas); Reunión con JRC/IPT (Sevilla); Asamblea Anual Bioplat y Geoplat (Madrid).

El CIEMAT también participa en 24 plataformas tecnológicas (PT) españolas y europeas relacionadas con el ámbito de la energía.

A continuación, se describen algunos de principales proyectos y logros alcanzados por el Organismo en el ámbito energético durante el año 2016, organizados por áreas científico técnicas y líneas de actuación.

10.2. ÁREA: ENERGÍAS RENOVABLES Y AHORRO ENERGÉTICO

Es una de las parcelas de investigación más importantes del CIEMAT en la que se trabaja para lograr el desarrollo y optimización de nuevas tecno-
Las energías sostenibles y más respetuosas con el medioambiente.

Se trabaja en distintas energías renovables como: energía solar, tanto fotovoltaica como térmica, energía eólica o bioenergía y otras formas de ahorro energético.

LÍNEA: Energía solar fotovoltaica

En dispositivos fotovoltaicos (FV) de silicio depositado se ha estudiado la pasivación de obleas de silicio multicristalino mediante hidrogenación por diferentes métodos (proyecto HELLO) y se ha estudiado el desarrollo de silicio cristalino sobre vidrio por tratamiento con láser de láminas delgadas de silicio amorfo no hidrogenado.

En materiales y dispositivos policristalinos de lámina delgada se han desarrollado ventanas inteligentes para su integración como elemento constructivo avanzado realizando la caracterización de dispositivos electrocrómicos, el dimensionado de un sistema para alimentación autónoma y las pruebas climáticas y de ciclado para la caracterización de ventanas inteligentes (Proyecto OMEGA).

En módulos y células solares FV se ha estudiado el impacto de la radiación ultravioleta (UV), el almacenamiento a alta temperatura y las vibraciones en el tiempo de vida de diferentes tipos de módulos FV (proyecto CONFIANZA). Se ha realizado un estudio de la degradación de módulos FV de lámina delgada en condiciones climáticas continentales y se han desarrollado mapas con cobertura global del factor espectral.

En centrales y sistemas FV autónomos y conectados a red se ha completado el sistema de monitorización de la fachada FV autónoma con acumulación del Edificio 42 de la sede del CIEMAT (Madrid-Moncloa).

En componentes FV y nuevos desarrollos se ha desarrollado un modelo de comportamiento térmico de paneles FV de foco puntual y refrigeración activa. Se ha realizado una simulación de la generación eléctrica de sistemas FV integrados en edificios (proyecto OMEGA).

LÍNEA: Energía solar térmica

En el ámbito de los sistemas solares de media concentración se han estudiado soluciones para minimizar el consumo de agua en centrales termosolares (proyectos WASCOP y RAISELIFE).

Se han estudiado cristales líquidos para determinar su viabilidad de uso en sistemas de almacenamiento térmico para sistemas de generación directa de vapor y se ha ensayado, en condiciones reales, el primer prototipo de sistema de almacenamiento mediante cambio de fase.

En el ámbito de los sistemas solares de alta concentración se han ensayado y cualificado prototipos de heliostato y se ha impulsado el desarrollo de la tecnología de receptor central, destacando el análisis y optimización de absorbores porosos, tanto metálicos como cerámicos, para receptores volumétricos (proyectos CAPTURE, DETECSOL y ALCCONES).

En cuanto a la aplicación de la concentración solar a procesos industriales y combustibles solares,
se han realizado, junto con ABENGOA S.A., los ensayos para demostrar la viabilidad técnica de la producción solar de hidrógeno (H2) a partir de materiales tipo ferrita.

En desalinización solar de agua de mar, se han implementado las librerías de simulación conjunta para procesos térmicos de desalación (LT-MED, TVC-MED, MSF y MD), procesos de membrana (ósmosis inversa) y plantas de producción eléctrica basadas en tecnologías termosolares de concentración (proyecto STAGE-STE).

LÍNEA: Aplicaciones de la radiación solar

En desinfección y detoxificación de aguas, se han realizado los primeros ensayos de desinfección solar para el diseño, desarrollo y pilotaje de nuevas tecnologías solares integradas para la obtención de agua potable en emplazamientos remotos en países en vías de desarrollo donde la potabilización convencional (cloración u ozonización) no es posible (proyecto WaterSPOUTT).

En el ámbito de la destoxicificación y desinfección solar de aire, se ha estudiado la deposición de TiO2 en forma de sol-gel sobre soportes metálicos, fundamentalmente aluminio, dado su capacidad de reflejar la radiación UV del espectro solar o de lámparas UV, que garanticen la continuidad del tratamiento durante las 24 horas del día.

Se ha demostrado la posibilidad de identificar precozmente la presencia de los hongos Penicillium chrysogenum y Fusarium verticillioides mediante la identificación de los COV que emiten en sus estados tempranos de crecimiento.

En el ámbito de la radiación solar: medida y caracterización, se ha desarrollado un algoritmo para las imágenes de las cámaras de cielo que permiten la determinación de la distancia angular mínima entre las nubes y el sol en la calibración de radiómetros ya que la incertidumbre de medición causada por la calibración es la contribución más relevante a la incertidumbre global de los radiómetros. Además, se ha contribuido al desarrollo de modelos de combinación de las predicciones de la radiación solar (proyecto DNICast).

LÍNEA: Energía eólica

En el ámbito de sistemas eólicos aislados, respecto a su aplicación para desalación de agua de mar y/o salobre, se ha comenzado el diseño de una planta de desalación por osmosis inversa accionada mecánicamente mediante una aeroturbina eólica (proyecto WINDRO) y se ha desarrollado parcialmente el sistema de control operativo del sistema de desalación mediante compresión mecánica de vapor (MVC) (proyecto GreenMVC).

Dentro del campo de predicción de recursos eólicos se ha realizado el análisis de la climatología eólica y de eventos de viento extremo en Ouarzazate (Marruecos). Se ha continuado estudiando, a través del aumento de escala estadístico (downscaling), la variabilidad centenaria del viento de superficie en el noreste de América del Norte. Se ha realizado la revisión de la temperatura en Asia oriental y su incertidumbre asociada en los últi-
mos dos siglos de reconstrucciones y simulaciones climáticas.

LÍNEA: Bioenergía

En producción de biomasa y biocombustibles sólidos, se han continuado los trabajos de desbroce y empacado de biomasa de matorral (jara y tojo) y se han llevado a cabo ensayos demostrativos de logística de biomasa en Soria. Se ha comprobado que el método de recolección mediante empacado facilita la logística y el secado natural de la biomasa hasta valores de uso inferiores al 20% de humedad, con pérdidas de materia seca inferiores a un 1% mensual (proyecto ENERBIOSCRUB).

Se ha liderado una campaña de muestreo, la identificación de los biocombustibles más utilizados y las biomasa de mayor potencial sostenible en países mediterráneos (Croacia, Eslovenia, España, Grecia, Italia, Portugal y Turquía) y la selección de 3 biocombustibles de mayor interés para caracterizar diferentes equipos comerciales de calefacción doméstica. Además, el CIEMAT es responsable de la actualización de la plataforma GIS BIORAISE y su extensión a los países mediterráneos participantes (proyecto Biomasud plus).

Dentro del ámbito de los biocarburantes se han estimado los volúmenes de producción de los residuos de orujillo y hojas de limpieza de almazara a nivel nacional y se han elaborado los mapas de distribución y localización de dichos residuos mediante el empleo del software SIGSe. Se han optimizado las condiciones de extracción acuosa del orujillo, previa al pretratamiento, y se ha realizado el pretratamiento con agua caliente, habiéndose estudiado el efecto de la temperatura y de la adición de un catalizador ácido (proyecto BIOROLoS).

Se ha avanzado en el desarrollo un modelo de utilización de la biomasa de microalgas en la producción de diferentes bioproductos, determinando el efecto de las condiciones de crecimiento de las microalgas (temperatura y fotoperiodo) sobre la producción de metano y comprobando que su productividad se ve afectada por las condiciones de crecimiento.

LÍNEA: Generación de energía marina

Se ha ensayado en laboratorio un sistema de almacenamiento de energía para el alisado de la potencia generada, basado en el uso de supercondensadores, dentro del desarrollo de un sistema de generación eléctrica a partir de la energía de las olas (proyecto UNIDIGEN+). Asimismo, se han realizado en el puerto de Las Palmas de Gran Canaria (Islas Canarias) diferentes reparaciones y pruebas de funcionamiento del convertidor de energía desarrollado.

LÍNEA: Eficiencia energética

En el campo de evaluación energética experimental de componentes constructivos y edificios, se han continuado los estudios para maximizar la exactitud, minimizar el coste y la intrusividad en la estimación experimental en las renovaciones de aire y en los perfiles de ocupación en los
recintos. Estas variables son de gran relevancia respecto a la evaluación experimental de edificios mediante técnicas tradicionales que venía siendo compleja, intrusiva y, a veces, poco precisa (programa OMEGA).

Se ha finalizado el análisis dinámico de datos y el estudio del rendimiento para la caracterización del rendimiento energético de edificios basada en mediciones dinámicas de escala real, iniciándose la creación de una red de excelencia en esta área (programa EBC).

En el campo de análisis energético en entornos urbanos, se ha finalizado la creación de un servicio a través de la web para informar y aumentar el interés de los vecinos por mejorar la eficiencia energética de su distrito a través de la rehabilitación energética de los inmuebles y la recomendación de buenas prácticas (proyecto PRENDE).

Se ha terminado la puesta en operación de dos plantas prototipo que incluyen sistemas de micro y minigeneración distribuida que integran energías renovables, y sistemas innovadores de gestión integral que operan en la provincia de Zamora (proyecto SMARTZA).

LÍNEA: Otras tecnologías:
almacenamiento de energía, pilas de combustible y SIG

En almacenadores de energía se ha finalizado el sistema de almacenamiento con ultracondensadores y se han desarrollado las correspondientes estrategias de control dentro del desarrollo de la hibridación de los ultracondensadores con las baterías para aplicación a la generación en renovables (proyecto SH2).

En pilas de combustible, en el campo de pilas de combustible de alta temperatura, se ha optimizado el sistema automático de tape-casting y se ha logrado preparar láminas delgadas de electrolitos basados en ceria (GDC y SDC) con espesores de ~200 µm.

En pilas de combustible de baja temperatura, se han montado varias pilas en base a diseños propios, capaces de aprovechar pasivamente el aire del entorno (air-breathing) y utilizar el 100% del H2 almacenado. Estas pilas son idóneas para su utilización en dispositivos electrónicos portátiles (proyecto E-LIG-E).

En tecnologías de la información geográfica para la integración de energías renovables, se han desarrollado nuevas capacidades y se ha aumentado la precisión del modelo gSolarRoof. Este modelo, capaz de determinar con una alta precisión la superficie disponible en cada tejado para el aprovechamiento de la energía solar, ha sido reconocido por la Galería de la Innovación de la Feria Internacional de Energía y Medio Ambiente (GENERÁ 2016)

10.3. ÁREA: FISIÓN NUCLEAR

Gracias a su amplia experiencia desde su creación como Junta de Energía Nuclear, el CIEMAT es un centro de referencia en la investigación en distintas áreas de estudio de la energía nuclear en ge-
neral y de la fisión nuclear en particular. Merece la pena destacar la estrecha colaboración y el apoyo técnico a instituciones como el. ¡Error! No se encuentra el origen de la referencia. y ¡Error! No se encuentra el origen de la referencia.

LÍNEA: Seguridad nuclear

En accidentes severos, se ha finalizado el estudio de sistemas de mitigación del término fuente, en colaboración con el CSIC, cuyos resultados han indicado que dicho pretratamiento tendría el potencial de eliminar una fracción sustancial de las partículas sub-micrónicas de la distribución antes de llegar a la etapa de retención, lo que mejoraría la eficiencia filtrante del sistema (proyecto PASSAM).

En cuanto al análisis del accidente de Fukushima (Japón), se ha contribuido en la explicación de las observaciones realizadas en la Unidad 1 del emplazamiento y la aplicación de códigos de accidente severo a los análisis de accidentes con pérdida total de refrigerante en las piscinas de combustibles gastados.

En termo-mecánica del combustible nuclear, se ha estudiado la pérdida de hermeticidad de contenedores de almacenamiento en seco de combustible irradiado. Mediante metodologías fluido-dinámicas 3D y técnicas de análisis como funciones de transferencia se ha logrado crear un modelo que permite estimar la máxima temperatura del combustible y las tasas de calentamiento. Entre otros resultados, en el caso concreto del contenedor simulado, se ha encontrado que, para cargas térmicas inferiores a 20 kW, el combustible nunca alcanzaría la temperatura límite establecida en la regulación (673 K).

Respecto a la seguridad de sistemas nucleares innovadores, se ha finalizado el desarrollo de un modelo predictivo de generación de aerosoles por interacción del Na con O2 en caso de accidente severo con liberación masiva de Na al recinto de contención, que ofrece el ritmo de generación de partículas y el tamaño de dichas partículas (~nm) (proyecto JASMIN). El modelo considera cuatro fenómenos fundamentales: vaporización del Na, reacción química Na-O2, nucleación homogénea de vapores de Na2O y condensación sobre partículas primarias.

LÍNEA: Innovación nuclear

En ciclos avanzados del combustible nuclear, se ha continuado con el cálculo de la tasa de dosis de un elemento de combustible tras su decaimiento. La fase de verificación de las distintas metodologías empleadas ha finalizado satisfactoriamente y se ha comenzado la fase de validación con datos experimentales.

En reactores críticos y subcríticos, se ha realizado un diseño del core-catcher de ASTRID, concepto de reactor refrigerado por Na que servirá como prototipo de dicha tecnología, y se ha estudiado la posible recriticidad del núcleo fundido tras un accidente severo concluyendo que es necesario, para garantizar la seguridad del sistema, que el core-catcher sea cilíndrico con un radio lo mayor posible con el fin de aumentar al máximo las fugas neutrónicas (proyecto ESNII PLUS).
En experimentos integrales en reactores subcríticos han concluido la monitorización de la reactividad de un núcleo subcrítico y la caracterización de un núcleo crítico, ambas tareas lideradas por el CIEMAT y basadas en medidas experimentales en configuraciones del reactor VENUS-F del SCK-CEN (Bélgica) que simula al reactor MYRRHA.

En datos nucleares para la transmutación y reactores, se ha desarrollado la herramienta SUMMON y se ha aplicado para obtener las incertidumbres en la criticidad del reactor ALFRED, concepto de reactor refrigerado por plomo que servirá como prototipo de dicha tecnología, usando una matriz de covarianza existente en SCALE (44 grupos) y los coeficientes de sensibilidad obtenidos por MCNP (proyecto CHANDA).

LÍNEA: Residuos radiactivos

En residuos de baja y media actividad, se han llevado a cabo las tareas para ejecutar los escalones de lixiviación en los reactores específicos diseñados ad-hoc para dichos experimentos con piezas de acero inoxidable activado procedente de los internos superiores de procedimiento de desmantelamiento y clausura de la CN José Cabrera, de muestras de grafito impermeabilizado en IGM y de muestras de grafito irradiado en bloques de las camisas del reactor de la CN Vandellós-I.

Se han realizado ensayos con grafito virgen e irradiado a distintas temperaturas y a distintos flujos de oxidante para el estudio de la oxidación de grafito y el cálculo de la tasa de recuperación de C. Las conclusiones de estos estudios indican que el uso de otros gases oxidantes (diferentes a O2 y CO2) que permitan una descontaminación del orden del 60-80% del 14C disponible sin corrosión de la matriz. Además, se han producido diferentes probetas de IGM con grafito virgen, las primeras de este tipo con grafito irradiado en el mundo, que han servido para realizar los estudios del comportamiento frente a la lixiviación (proyecto GRAFEC y CAST).

En residuos radioactivos de alta actividad, se han continuado los estudios de estabilidad del combustible nuclear irradiado en su disposición final en un almacenamiento geológico profundo de sistema en húmedo, así como en un almacenamiento temporal centralizado (ATC) en medio seco y se ha dado apoyo científico-técnico para la caracterización y comportamiento del combustible gastado en condiciones de ATC para ENRESA.

Se ha avanzado en los estudios de estabilidad y viabilidad de extractantes a las condiciones de radiólisis, acidez y calor de los procesos de separación hidrometalúrgicos. Estas moléculas han demostrado su efectividad en los procesos SANEX y GANEX, que permiten reciclar el plutonio y minimizar el resto de actínidos contenidos en el combustible gastado para facilitar la reducción de la radiotoxicidad del combustible a menos del 1% del valor para el ciclo abierto, sin reprocesado (proyecto SACSSES).

10.4. ÁREA: FUSIÓN NUCLEAR

La actividad principal en esta área en el CIEMAT se relaciona con la explotación científica y mejora del Heliac Flexible TJ-II, equipo dentro del Laboratorio Nacional de Fusión considerado como ¡Error! No
se encuentra el origen de la referencia. También se contribuye al desarrollo de futuros reactores y se da soporte a la Empresa Común Europea para el ¡Error! No se encuentra el origen de la referencia. (Barcelona) y a las actividades de apoyo a la industria de cara a su participación en los contratos del ¡Error! No se encuentra el origen de la referencia.

Además, el CIEMAT es el miembro español del Consorcio ¡Error! No se encuentra el origen de la referencia. y canaliza la participación de las instituciones españolas en este programa.

LÍNEA: Ingeniería de fusión

Se han iniciado los diseños de detalle de las guías de onda y los elementos de soporte para las zonas de acceso restringido en el Reflectómetro de Posicionamiento del Plasma (PPR), y en el sistema de observación visible /IR, para el que se ha iniciado el diseño del sistema de lentes y espejos situados entre la salida de la cámara de vacío y los sensores (proyecto ITER).

Se ha desarrollado el sistema de control y adquisición de datos para el reflectómetro Doppler de W7X y estudiado ensayos no destructivos por operación remota para el programa DEMO de EUROfusion.

LÍNEA: Física de fusión

Dentro de los estudios experimentales de física de plasmas, se ha continuado con la investigación del transporte de impurezas, primera evidencia experimental de asimetrías de potencial en plasmas con raíz iónica, y del efecto isotópico, es decir, la observación de flujos zonales durante la transición a regímenes de confinamiento mejorado en plasmas de H2 y D. También se han validado, mediante la sonda dual de iones pesados HIBP, las simulaciones sobre dinámica temporal de los flujos zonales, la dinámica de partículas neutras (primera evidencia experimental del efecto de la turbulencia en la dinámica de las partículas neutras). Se ha operado el sistema de inyección de pastillas de impurezas TESPEL y mejorado el sistema dual HIBP para trabajar con detector de 1 MHz (experimento TJ-II).

Respecto a los estudios teóricos de física de plasmas, se ha realizado la exploración teórica de las propiedades de las configuraciones magnéticas optimizadas en el confinamiento. Se ha aplicado un nuevo método numérico optimizado para cálculo del transporte neoclásico en nuevas configuraciones y se ha progresado en la aplicación de la teoría girocinética para cálculo del transporte turbulento en nuevas configuraciones.

LÍNEA: Tecnologías para fusión

Dentro del desarrollo de la instalación Internacional Fusion Materials Irradiation Facility (IFMIF) se han enviado a su sede en Rokkasho (Japón) componentes adicionales para los sistemas de: radiofrecuencia, línea de transferencia de media energía (MEBT) y módulo de diagnóstico del haz D-Plate, desarrollados en el CIEMAT (proyecto IFMIF).

Continúan las actividades del diseño del reactor DEMO, centradas en materiales, neutrónica, segu-
La energía en España 2016

Investigación y desarrollo en el sector energético

Productos obtenidos a partir de Residuos Sólidos Urbanos (RSU) y caracterizados por su elevado poder calorífico inferior (PCI) y su contenido de S y Cl. La principal conclusión del estudio es la necesidad de evitar la posible formación de aglomerados en el interior de la cámara de combustión como consecuencia de la elevada concentración de compuestos alcalinos en las cenizas de los combustibles (proyecto BIOCAKE).

En gasificación se han seleccionado residuos, generados por las empresas asociadas al programa RETOPROSOST de la Comunidad de Madrid, como combustibles potencialmente valorizables energéticamente. Con esto se pretende minimizar el volumen de residuos ligno-celulósicos generados en la Comunidad de Madrid y aprovecharlos mediante valorización termoquímica para obtener un gas sintético que, una vez limpio, pueda emplearse para la generación directa de energía en motores. Se ha evaluado si es necesario someter a los residuos a operaciones de pretratamiento, (secado, triturado, cribado, pelletizado...) para su correcta alimentación y dosificación al reactor de gasificación (proyecto RETOPROSOST).

10.5. ÁREA: Valorización energética de combustibles y residuos

El desarrollo global de sistemas avanzados de combustión y gasificación para lograr procesos más limpios y eficaces es una necesidad para disminuir la contaminación atmosférica. Estos procesos se aplican a combustibles fósiles (carbón), biomasa y residuos (procedentes de procesos industriales, aguas residuales, etc.).

Igualmente, se estudian otros procesos para la disminución de la contaminación como son la depuración y procesado de gases, así como la captura y valorización de CO2 centrando la actividad en el desarrollo de sistemas avanzados que, mediante catalizadores, membranas y adsorbentes, den respuesta a dichos requerimientos.

LÍNEA: Combustión y gasificación

En combustión se ha estudiado el comportamiento térmico en caldera de lecho fluidizado de bio-

LÍNEA: Procesado de gases

En captura y valorización de CO2 en pre-combustión, se ha analizado su mejora mediante el uso de diferentes tipos de sistemas (sólo adsorbente, sistema híbrido adsorbente-catalizador y material bifuncional adsorbente-catalizador) para su aplicación con producción de H2 en procesos de reacción water-gas-shift (WGS) mejorada por adsorción (SEWGS).
Y en post-combustión se ha finalizado el estudio en planta piloto de la captura de CO₂ e hidrogenación a combustibles promovida electroquímicamente y se ha evaluado la hidrogenación de CO₂ mediante catalisis heterogénea convencional.

En producción de hidrógeno se ha finalizado el desarrollo de un proceso innovador de producción de H₂ a partir de gasificación de biomasa, evaluando su viabilidad como tecnología alternativa para la generación eléctrica. Se ha definido el proceso de gasificación necesario para la conversión termoquímica de biomasa en un gas rico en H₂. Se ha aplicado satisfactoriamente el proceso desarrollado a biomasa procedentes cultivos energéticos con potencial para la agricultura en tierras marginales en España (Elytrigia elongata, Panicum virgatum y Nicotiana glauca). Esto es especialmente interesante para la última especie, a la que se pretende dar una salida industrial, ya que es una planta de secano de rápido crecimiento que requiere bajas inversiones, florece todo el año y además proporciona un elevado potencial para la producción de biomasa (proyecto CATARSYS).

En depuración y procesado de gases se ha finalizado con éxito el estudio de la síntesis, caracterización y ensayo en condiciones de reacción de dos nuevas líneas de catalizadores activos, selectivos y estables para el reformado de alquitranes procedentes de procesos de gasificación de biomasa y residuos basados en metales de transición que favorezcan su implantación a nivel industrial. Los nuevos catalizadores permiten trabajar a temperaturas de 550°C frente a los 1.000°C a los que tiene lugar el craqueo térmico, velocidades espaciales tres veces inferiores a las presentes en la bibliografía y superan la actividad y selectividad de los catalizadores comerciales utilizados como referencia sin mostrar cambios estructurales ni problemas asociados a desactivación por formación de carbón (proyecto CATARSYS).

10.6. ÁREA: EFECTOS AMBIENTALES DE LA ENERGÍA

En esta área se estudian los efectos medioambientales asociados a la producción de la energía y los derivados de la industria, agricultura, transporte y residuos en la atmósfera, suelos, en ecosistemas y en agrosistemas. También se desarrollan estrategias de conservación y recuperación de emplazamientos. Es destacable la investigación normativa en apoyo al Gobierno, para la discusión de Directivas y lanzamiento de las mismas.

Además, se desarrolla el programa horizontal de cambio climático en el que se enmarcan diferentes actividades sobre la compresión, adaptación y mitigación del cambio climático, así como el comportamiento humano sobre el mismo.

LÍNEA: Contaminación atmosférica

En caracterización de la contaminación atmosférica, se han estudiado los procesos de formación y transformación de los aerosoles en la atmósfera y las variaciones de algunas de sus propiedades como: higroscopacidad, composición química, propiedades ópticas, morfológicas o número y distribución por tamaño. Asimismo, se ha colaborado en el desarrollo de una plataforma informá-
tica para gestionar a nivel nacional la información sobre distribución de tamaño y número de aerosoles de la REDMAAS, coordinada por el CIEMAT. Además, se han estudiado las variaciones verticales o perfiles de algunas propiedades microfísicas (vapor de agua) de los aerosoles mediante técnicas de teledetección óptica como LIDAR (proyecto PROACCLIM). Por otra parte, la estación de medidas atmosféricas del CIEMAT-Madrid se ha integrado en la infraestructura europea ACTRIS incluida en la nueva hoja de ruta ESFRI 2016 de infraestructuras europeas (proyecto ACTRIS-2).

En modelización de la contaminación atmosférica, se ha analizado la red de estaciones de vigilancia de la calidad del aire del Ayuntamiento de Madrid, prestando especial atención a la posible redundancia entre estaciones y a la consistencia de su clasificación. Se ha estimado la representatividad espacial de algunas de las estaciones y se ha contribuido, junto con la Universidad Politécnica de Madrid (UPM), a un documento elaborado para el MAPAMA sobre optimización de redes de medida de la calidad del aire.

A consecuencia del incendio del almacén de neumáticos de Seseña (Toledo) se ha analizado, mediante modelos locales de alta resolución (CFD-RANS y CALPUFF) y modelos a mesoescala (WRF/CHIMERE), el área de impacto del incendio. En general el área de impacto es bastante local, aunque hay algunas incertidumbres en algunos contaminantes debido a la falta de datos precisos sobre las emisiones de contaminantes durante el incendio.

En el ámbito de la ecotoxicología, se ha analizado la sensibilidad al incremento de O3 troposférico de distintos cultivos de interés económico considerando las variedades y condiciones mediterráneas (trigo blando y cultivos de hoja); así como la modulación de esta respuesta por la disponibilidad de N2. Los resultados indican que la selección agronómica ha derivado hacia variedades más productivas pero más sensibles a los niveles elevados de O3 en ambiente. Además, este contaminante afecta a la resistencia a la sequía de las variedades estudiadas. En cuanto a los cultivos hortícolas, se ha analizado la sensibilidad relativa al O3 de los cultivos de hoja, siendo la espinaca el cultivo más sensible, seguido de la acelga y la escarola, encontrándose variedades sensibles cuya biomasa comercial se reduce por la exposición al contaminante.

Respecto a contaminantes orgánicos persistentes (COP) se han realizado la vigilancia ambiental de PCDD, PCDF y PCB en el entorno del incendio del almacén de neumáticos de Seseña (Toledo). En muestra de aire ambiental, los niveles encontrados en las muestras de inmisión son similares a los descritos en otras zonas evaluadas en el marco de la Red Nacional de Vigilancia Ambiental de COP, tanto a nivel europeo como mundial. En el caso de las muestras de suelo, la concentración es del mismo orden que la correspondiente a un suelo considerado «no afectado» localizado a más de 300 km del lugar. Los datos de concentración en muestras de polvo respirable de dos colegios evaluados (uno afectado directamente por el incendio y otro fuera de la zona) son comparables, encontrándose la mayoría de los congéneres en niveles inferiores a los límites de detección.

En emisiones contaminantes se ha seguido prestando apoyo técnico especializado al MINETAD...
y al MAPAMA en materia de emisiones a la atmósfera procedente de distintos tipos de fuentes emisoras, especialmente desde la OCEM-CIEMAT (Oficina para el Control de las Emisiones de las Grandes Instalaciones de Combustión).

Se ha aplicado la tecnología de teledetección óptica RSD (Remote Sensing Device) para la medida de emisiones, proporcionando interesantes resultados en relación al comportamiento emisor del parque circulante español de turismos. Dicho estudio ha sido galardonado en 2016 con el premio ITS a la Movilidad Sostenible (proyecto CORETRA).

LÍNEA: Cambio climático

En bases científicas del cambio climático se han caracterizado experimentalmente las propiedades ópticas del aerosol en diferentes entornos y procedente de distintas fuentes, obteniendo pa-
râmetros que intervienen en las estimaciones del forzamiento radiactivo (proyectos ACTRIS-2 y PROAACLIM).

En seguimiento y monitorización del cambio climático, se han estudiado los parámetros geomorfológicos y de suelo para caracterizar los cambios naturales inducidos por el medio ambiente y el hombre dentro de la Sierra de Guadarrama (Madrid). Además, se ha realizado el estudio integrado del índice de biomasa, la dimensión fractal de masas y la dimensión espectral para caracterizar diferentes horizontes en la zona de La Herrería.

Se ha incorporado a las estaciones activas de monitorización de depósito de contaminantes atmosféricos la estación en el Lago de Sanabria (Zamora) para el estudio del depósito de nutrientes por vía atmosférica en la cuenca del lago.

En el ámbito de cambio climático y comportamiento ciudadano se ha llevado a cabo un estudio cualitativo orientado a entender el papel de la metáfora en la percepción y discusión pública sobre el cambio climático tanto en el ámbito local (ciudad de Barcelona) como global (proyecto METAFFERCOM).

10.7. ÁREA: EFECTOS DE LAS RADIACIONES IONIZANTES

En esta área se realizan estudios, determinaciones, evaluaciones, desarrollo de metodologías y controles de los niveles de radiactividad personal y ambiental de distintos ecosistemas.

LÍNEA: Protección radiológica del público y del medio ambiente

En relación al desarrollo de criterios y fundamentos de protección radiológica se ha desarrollado la base de datos AIRzD2 para recopilar la información sobre las grandes infraestructuras existentes en Europa para la investigación en protección radiológica.

Sobre el desarrollo de metodologías, modelos y herramientas de evaluación del impacto radiológico, se ha determinado utilizando modelos de matrices la respuesta a una irradiación externa crónica en poblaciones teóricas de 12 especies de animales (invertebrados acuáticos y terrestres, peces y mamíferos terrestres) estimándose los riesgos para dichas poblaciones a diferentes tasas de dosis de radiación γ. Los resultados han mostrado que la respuesta a nivel de población depende del efecto biológico producido en el individuo (reducción en la supervivencia, retraso en la madurez o reducción de la fecundidad), del efecto considerado en la población (tasa reproductiva neta o tamaño de la población en equilibrio) y de las características del ciclo vital de las especies estudiadas (proyecto STAR y proyecto ERIBIO).

En el ámbito del impacto radiológico de fuentes de radiación natural y artificial, se ha evaluado la gestión de residuos NORM (Naturally Occurring Radioactive Materials) en vertederos convencionales de residuos peligrosos y no peligrosos y se ha comenzado el inventario español de las industrias que generan residuos NORM y de los citados vertederos (proyecto NORMIMA). También se han estudiado las influencias sistemáticas de los
datos de espectrometría y cerca del umbral de decisión para mediciones de radiactividad en el medio ambiente (proyecto MODARIA).

En relación a la protección radiológica en situaciones de intervención se han evaluado los resultados obtenidos en el panel español sobre gestión de bienes de consumo contaminados con radiactividad.

LÍNEA: Radiactividad ambiental y vigilancia radiológica

Se ha iniciado el desarrollo de un escáner modular multienergético de alta resolución para la detección de mercancías ocultas por las personas tanto interna o externamente, que se aplicará en controles de seguridad de aeropuertos para diferenciar mercancías prohibidas o ilegales de tejidos naturales o materiales benignos como prótesis mejorando los sistemas actuales en cuanto a privacidad y comodidad (proyecto MESMERISE).

LÍNEA: Dosimetría de las radiaciones ionizantes

En métodos y modelos matemáticos aplicados a la dosimetría de radiaciones destaca el desarrollo de nuevos maniquíes voxelizados para la determinación de 131I en tiroides a partir de modelos físicos y maniquíes antropomórficos. Se ha evaluado mediante simulación numérica la eficiencia de detección en función del volumen y la forma del tiroides y el tipo de detector. Para ello se han utilizado 4 detectores y la distancia de medida y la contribución del 131I extratiroideo, dependiendo del tiempo transcurrido desde la incorporación del 131I, como variables. Además, se ha tenido en cuenta el estudio de la contribución extratiroidea en función de la edad utilizando 7 maniquíes voxelizados y la geometría de medida, parámetros especialmente importantes para la determinación precisa del I incorporado tras un posible accidente radiológico (proyecto CATHYMARA).

En relación a la dosimetría de radiación interna, se ha desarrollado un análisis comparativo de resultados obtenidos con técnicas de medida de espectrometría α, KPA y/o análisis de patrones para la medida de U-Pu en trabajadores internos y externos.

Se ha continuado con la determinación de las relaciones isotópicas de Sr, Pb y Nd (proyecto MOWER) y la determinación de la relación isotópica de U por espectrometría de masas en 114 muestras de microalgas y medios de cultivo (digestión ácida y purificación mediante cromatografía de extracción en fase sólida a vacío) para estudiar el proceso de bioacumulación y enriquecimiento isotópico en dichos seres vivos (proyecto URANIUM).

En dosimetría de radiación externa, se ha automatizado el proceso de control de calidad del lector de dosímetros personales Panasonic UD-716 y el proceso de cálculo de factores de corrección individual de la sensibilidad de los dosímetros personales. Además, se han validado los lectores de dosímetros personales UD-716H.

En dosimetría retrospectiva, se han estudiado las posibilidades de los carbonatos en dosime-
tría de alimentos irradiados, comprobando que la luminiscencia de carotenoides formados por microorganismos y presentes en sedimentos ricos en cobre es potencialmente válida para detectar alimentos irradiados.

LÍNEA: Físico-química de actínidos y productos de fisión

En el ámbito de los procesos de adsorción de radionucleidos en superficies minerales se ha estudiado la adsorción y difusión del Ra en materiales de cemento y materiales arcillosos. Los estudios de adsorción relacionados con las principales minerales adsorbentes del cemento (fases de silicato cálcico hidratadas) se han extendido también a diferentes metales alcalinos (Cs, Na), alcalinotérreos (Ba, Sr) y aniones (SeO₃²⁻ y SO₄²⁻) (proyecto FAVL).

Respecto al transporte de radionucleidos en el medioambiente, se ha estudiado la difusión de elementos conservativos y Cs en morteros y hormigones analizando la contribución de las distintas estructuras de poros de estos materiales, tanto desde el punto de vista experimental como de modelización. Asimismo, se ha analizado la posibilidad de mejorar la funcionalidad de la barrera de bentonita con respecto a la retención de aniones, en particular añadiendo óxidos en forma de nanopartículas (proyecto MIRAME). Se han evaluado las condiciones en las que esta adición mejora el comportamiento de la bentonita, tanto en ensayos en estático como en ensayos de transporte, en colaboración con el INFN (Italia) y se ha desarrollado un modelo para predecir el comportamiento de las mezclas (Proyecto ENSAR2).

Los estudios sobre el papel de coloides y nanopartículas en el transporte de contaminantes, se han establecido relaciones entre la estabilidad de diferentes tipos de coloides de arcilla y los procesos de erosión y, tras el análisis de los datos, se han establecido una serie de recomendaciones sobre el posible efecto de los coloides de bentonita en la migración de radionucleidos en un almacenamiento en granito (proyecto BELBAR).

10.8. ÁREA: ESTUDIOS DE SISTEMAS ENERGÉTICOS Y MEDIOAMBIENTALES

Están relacionados con el estudio y la evaluación de aspectos socioeconómicos, ambientales y psicosociales en tecnologías medioambientales y energéticas. El CIEMAT tiene un programa de cultura científica centrado en la percepción social de la ciencia y la participación ciudadana y un programa en derecho ambiental, para disponer de instrumentos jurídicos eficaces al servicio del desarrollo sostenible y de la protección ambiental. Además, se realizan estudios de inteligencia y prospectiva que sirven de base para la planificación y la toma de decisiones estratégicas.

LÍNEA: Investigación sociotécnica

En el ámbito de la percepción del riesgo ambiental y aceptación social de tecnologías energéticas se han llevado a cabo dos estudios sobre aceptación de las tecnologías del H₂ y las pilas de combustible. El primero, ha permitido recoger evidencia sobre la aceptación pública de las aplicaciones
Se han identificado las principales necesidades y dificultades con las que se encuentran las administraciones públicas a la hora de implementar políticas de eficiencia energética y se han identificado algunos casos de éxito relevantes (proyecto PUBLENEF).

Se ha participado y contribuido al diálogo e intercambio entre autoridades y expertos de los distintos estados miembros sobre mejores prácticas en lo referente a la implementación de la Directiva de Renovables, co-liderando junto al representante alemán el grupo de trabajo dedicado a los mecanismos de cooperación (proyecto CA-RES).

Respecto al análisis de ciclo de vida de procesos energéticos se ha realizado la evaluación de la sostenibilidad ambiental de los prototipos de energías renovables (proyectos REELCOOP, BIOSOL y CAPTURE).

En el ámbito de la modelización de sistemas energéticos, se ha realizado la evaluación de la relación entre los aspectos de seguridad técnicos y los costes internos y externos de una futura planta de fusión (proyecto SES). También se han identificado una serie de indicadores estratégicos de la energía para la evaluación de los resultados de los distintos escenarios planteados yanalizados con el modelo EUROfusion Times Model (ETM).

LÍNEA: Análisis de sistemas energéticos

En aspectos socioeconómicos en sistemas energéticos se ha realizado la evaluación de los aspectos socioeconómicos distintos prototipos de energías (proyecto REELCOOP, proyecto BIOSOL y proyecto CAPTURE).

LÍNEA: Inteligencia y prospectiva

El sistema de vigilancia tecnológica e inteligencia competitiva del CIEMAT fue el primero certificado según la norma UNE 166006:2011.
Sus actividades van encaminadas a obtener información del entorno tecnológico para cubrir las necesidades de las partes interesadas y que puedan tomar decisiones de cara a aprovechar oportunidades o evitar amenazas relacionadas con su posicionamiento tecnológico. Se ha desarrollado seis estudios de vigilancia para el CIE-MAT, dos informes para la empresa URBASER y cuatro ediciones del boletín de vigilancia tecnológica de patentes sobre biomasa que se realiza para la plataforma tecnológica BIOPLAT, en colaboración con la Oficina Española de Patentes y Marcas.

Centro Nacional de Energías Renovables (CENER)

El Centro Nacional de Energías Renovables (CENER) es un centro tecnológico especializado en la investigación aplicada y en el desarrollo y fomento de las energías renovables. Cuenta con una alta cualificación y un reconocido prestigio nacional e internacional.

La Fundación CENER-CIEMAT inició su actividad en el año 2002 y su Patronato está formado por el Ministerio de Economía, Industria y Competitividad, CIEMAT, el Ministerio de Energía, Turismo y Agenda Digital y el Gobierno de Navarra. En la actualidad, presta servicios y realiza trabajos de investigación en 6 áreas: eólica, solar térmica y solar fotovoltaica, biomasa, energética edificatoria e integración en red de las energías renovables.

CENER enfoca su actividad hacia el apoyo a las empresas del sector y el progreso tecnológico para la mejora de la competitividad de las energías renovables.

• Desarrolla y transfiere a la industria conocimiento y conceptos aplicables dentro de su actividad investigadora.

• Capta conocimiento trabajando en consorcios con empresa y centros de referencia internacional para ofrecer un valor tecnológico diferencial que pueda ser incorporado por la industria.

• Presta servicios de alto valor mediante la aplicación de conocimientos muy especializados o infraestructuras de ensayo fuera de lo común.

Infraestructuras

CENER está dotado de infraestructuras tecnológicas de última generación, con los más modernos laboratorios e instalaciones a nivel mundial, destacando especialmente el Laboratorio de Ensayaros de Aerogeneradores (una infraestructura de referencia en el mundo), el Parque Eólico Experimental, el Centro de Biocombustibles de 2ª generación y una Microrred.

Las principales instalaciones de CENER son descritas a continuación. Adicionalmente a estas CENER ofrece al sector para llevar a cabo I+D+i otras infraestructuras de gran relevancia: ensayo de módulos fotovoltaicos e inversores, ensayos de tubos receptores de plantas cilindro-parabólicas, ensayo de captadores planos, desarrollo de células y procesos de fabricación fotovoltaica.
INVESTIGACIÓN Y DESARROLLO EN EL SECTOR ENERGÉTICO

Laboratorio de Ensayo de Aerogeneradores (LEA)

Se trata de una infraestructura dedicada a pruebas y ensayos de aerogeneradores abarcando desde el análisis de los componentes hasta el de aerogeneradores completos, según normas internacionales. El LEA integra cinco cuatro centros de ensayo de última generación entre los que se encuentran:

- Laboratorio de Ensayos de Palas,
- Laboratorio de Ensayos de Tren de Potencia que comprende:
 - Banco de Ensayo de Tren de Potencia,
 - Banco de Ensayo de Generadores y sistemas eléctricos,
 - Banco de Ensayos de Nacelle, y Banco de Montaje de Nacelles,
- Laboratorio de Materiales Compuestos y Procesos,
- Parque Eólico Experimental (Sierra de Alaiz).

Centro de Biocombustibles de Segunda Generación CB2G

Este centro está diseñado para desarrollar y validar a escala preindustrial nuevos biocombustibles de 2ª generación y bioproductos, así como los procesos de producción de los mismos de forma global, o específicamente equipos y componentes clave, permitiendo reducir el tiempo de puesta en el mercado de estos procesos y el riesgo asociado a los mismos.

En esta instalación se puede procesar un amplio rango de biomasas (herbáceas y leñosas), incluir una amplia gama de pre-tratamientos adecuados a las diversas biomasas y procesos de conversión, disponer de capacidad para el desarrollo de procesos de producción de una amplia gama de biocombustibles de 2ª generación y bioproductos, incluyendo nuevos conceptos de biorefinería, y operar de forma continua en ensayos de larga duración simulando las condiciones industriales, de modo que los resultados obtenidos y los desarrollos realizados puedan ser extrapolables a escala industrial.

Incluye:

- Laboratorio para el tratamiento y caracterización de muestras de proceso,
- Unidad de Pretratamiento Físico de Biomasa. Incluyendo los procesos de astillado, secado, molienda y pelletizado.
- Unidad de Torrefacción de Biomasa.
- Unidad de Gasificación: Reactor de Lecho Fluido Burbujeante con una Potencia nominal: de 2 MW (térmicos).
- Unidad de Procesos Bioquímicos: Instalación capaz de trabajar en diferentes configuraciones (SHF, SSF, CBP) y de llevar a cabo diversos procesos de fermentación tanto en aerobiosis como en anaerobiosis.
• Unidad de pretratamiento termoquímico.

• Hidrólisis enzimática con elevado contenido en sólidos.

• Batería de fermentadores totalmente monitorizados y preparados para operación en aerobiosis y anaerobiosis.

• Reactor de propagación de microorganismos.

Microrred ATENEA

Microrred orientada a aplicaciones industriales con una potencia instalada de más de 100 kW. Cubre parte de los consumos eléctricos del Laboratorio de Ensayo de Aerogeneradores -LEA- y del alumbrado del polígono industrial Rocafor, además de los propios de la microrred. Una de sus principales aplicaciones es como banco de ensayos para nuevas tecnologías, sistemas de generación, almacenamiento de energía, estrategias de control y sistemas de protección. Puede operar en modo aislado y en modo conectado a la red.

Consta de los siguientes equipamientos:

• Turbina eólica de 20 kW full-converter;

• Instalación Fotovoltaica de 25 kWp;

• Generador Diesel de 55 KVA;

• Microturbina de Gas de 30 kW con aprovechamiento térmico (generación de calor y frío);

• Baterías de Plomo-Ácido. (50 kW x 2 horas);

• Batería de flujo, (50 kW x 4 horas);

• Batería de ion Litio, (50 kW x ½ hora);

• Supercondensadores (30 kW x 459);

• Demanda: cargas trifásicas de 120 kVA, vehículo eléctrico y cargas reales de la luminaria del polígono industrial y oficina.

Actividades y proyectos de I+D

CENER desarrolla proyectos de I+D para el desarrollo de conocimiento y conceptos que posteriormente transfiere a la industria. Una de las principales vías de investigación son los consorcios en concurrencia competitiva donde genera redes de conocimiento.

Durante el año 2016 CENER ha continuado incrementando su actividad en proyectos competitivos de I+D+i, sobre todo de colaboración europea. En los últimos cuatro años CENER también ha incrementado su presencia en foros internacionales.

Se ha reforzado su papel en la Alianza Europea de Investigación en Energía (EERA), siendo miembro de los JP de eólica (como miembro del Comité Directivo y coordinador del subgrupo de Infraestructuras de Investigación), igualmente forma parte del «Steering Committee» del ETIP (Plataforma Europea de la Industria – antiguo TPWind); biomasa; solar térmica; solar fotovoltaica y redes inteligentes. En relación con la Agencia Interna-
cional de Energía CENER es co-representante de España en el «Renewable Energy Working Party», es coordinador de la tarea 11 («Base technology information exchange») y tarea 31 («WAKE-BENCH: Benchmarking of wind farm models») de IEAWind; es miembro del comité ejecutivo del implementign agreement para Fotovoltaica (PVPS) y participa en diferentes tareas de SolarPACES, IEA-SHC, PVPS, IEAHIA.

Las actividades y los proyectos más significativos de los diferentes departamentos de CENER en 2016 se exponen a continuación.

Departamento de Eólica

El Departamento de Energía Eólica de CENER tiene como finalidad desarrollar actividades de investigación aplicada y asesoramiento técnico en el ámbito de la energía eólica, prestando servicio a todos los agentes del sector, como son: promotores, fabricantes, entidades financieras, operadores, asociaciones y administraciones públicas, tanto nacionales como internacionales.

Se trata de mejorar la eficiencia y por lo tanto la competitividad de un sector en plena evolución. En este sentido, el Departamento de Energía Eólica de CENER está trabajando en diversos proyectos de investigación, tanto por iniciativa propia como en cooperación con centros tecnológicos, instituciones y empresas.

Los principales proyectos de I+D en 2016 han sido:

- **3D-MESO** – (Gobierno de Navarra, Ayudas a Centros Tecnológicos y Organismos de investigación/ Proyectos I+D).
 Líder del proyecto: CENER.

- **NEVA**. – Nuevas Estrategias de validación de aerogeneradores. (RETOS Colaboración).
 Líder del proyecto: NABRAWIND.

- **CL-Windcom**. Closed Loop Wind Farm Control. (H2020 LCE7-2016) (RIA).
 Líder del proyecto: CENER.

- **NEWA** – New European Wind Atlas (ERANET PLUS - FP7). MINECO-APCIN
 Líder del proyecto: CENER.

- **MARINET2** – Marine Renewable Infrastructures Network for Enhancing Technologies 2 (H2020-INFRAIA-1-2016) (RIA)
 Líder del proyecto: NATIONAL UNIVERSITY OF IRELAND, Cork.
Los principales proyectos en 2016 han sido:

- **SOLAR Train** – Photovoltaic module lifetime forecast and evaluation. (H2020-MSCA-ITN-2016 Training Networks)

Líder del Proyecto: Fraunhofer.

- **TEXTUMODU** - Desarrollo de vidrios estructurados para el control de la radiación infrarroja y su aplicación a la fotovoltaica. (Gobierno de Navarra, Ayudas a Centros Tecnológicos y Organismos de investigación/ Proyectos I+D).

Líder del proyecto: CENER.

- **PVDETECT** - Detección prematura de defectos en módulos FV (Gobierno de Navarra, Ayudas a Centros Tecnológicos y Organismos de investigación/ Proyectos I+D).

Líder del proyecto: CENER.

Departamento de Fotovoltaica

El departamento de Energía Fotovoltaica tiene como objetivo principal la reducción del coste del kWh producido por medios fotovoltaicos. Su actividad se sitúa en el punto intermedio entre la investigación básica y los entornos industriales de fabricación, complementando el I+D+i con servicios de validación y certificación de componentes (células, módulos, inversores, seguidores…), incluida la de plantas fotovoltaicas de generación de energía eléctrica.

Gracias a la variada cualificación técnica de sus miembros, las actividades del departamento abarcan actividades que van desde el estudio de los materiales y tecnologías de célula, hasta la instalación fotovoltaica una vez finalizada y produciendo energía.

El Departamento de Energía Solar Fotovoltaica (ESFV) está constituido por 2 entornos de conocimiento: Sistemas Fotovoltaicos y Células Fotovoltaicas. El Departamento de ESFV de CENER también colabora en proyectos de cooperación internacional patrocinados por AECI y en iniciativas de la Agencia Internacional de la Energía (IEA). Realiza actividades de certificación de módulos fotovoltaicos, diagnóstico de defectos y ensayos de rendimiento, medida y caracterización de células y módulos fotovoltaicos.
en lo que se refiere a la innovación y desarrollo tecnológico, como a medida y caracterización, facilitando de esta forma su implantación en el mercado.

Para alcanzar dicho objetivo durante 2016, además de consolidar la oferta de servicios y asistencias técnicas desarrolladas y optimizadas durante los últimos años, se ha profundizado en las actividades de I+D en tres ámbitos diferenciados:

- Desarrollo de nuevas capacidades que permiten ofertar nuevos e innovadores servicios y asistencias técnicas a la industria solar térmica y que responden a sus necesidades a corto y medio plazo.

- Desarrollo de nuevos componentes innovadores que permitan una reducción de costes relevante de la tecnología a corto y medio plazo, fruto de estos desarrollos son las dos patentes presentadas en 2015.

- Además, se ha seguido impulsando la participación en proyectos de investigación tanto nacionales como europeos consiguiéndose este año dos hitos importantes.

- Proyecto H2020 PREFLEXMS, cuyo objetivo es mejorar la previsibilidad y flexibilidad de la energía generada mediante plantas de concentración solar (CSP).

Además de los ya mencionados, los principales proyectos de I+D en 2016 han sido:

- SEHICET. Desarrollo de un sensor específico para la monitorización on-line de la presencia de hidrógeno molecular en aceites de centrales termosolares cilindro-parabólicas. (Gobierno de Navarra, Ayudas a Centros Tecnológicos y Organismos de investigación/ Proyectos I+D).

Líder del proyecto. CENER – ACCIONA.

- MOSAIC. Modular high concentration SolAr Configuration. (H2020LCE7)

Líder del proyecto. TEKNIKER.

- INSHIP. Integrating national research agendas on solar heat for industrial processes.

Líder del proyecto. Fraunhofer.

- MEDSOL. Strengthening Capacities of South-Mediterranean Higher Education Institutions in the Field of Solar Energy by Enhancing Links among Applied Research, Business and Education. (EUROPA)

Líder del Proyecto: Université de Strasbourg. (Francia)
la biomasa, prestando servicios a todos los agentes del sector: asociaciones, administraciones públicas, usuarios, productores, entidades financieras, etc. Su principal finalidad consiste en contribuir a mejorar las condiciones técnico-económicas de aprovechamiento de este tipo de energía.

Los principales proyectos de I+D han sido:

- **SYN2OL** - Development of a fermentation process from syngas to produce ethanol (Gobierno de Navarra, Ayudas a Centros Tecnológicos y Organismos de investigación/ Proyectos I+D).

 Líder del proyecto: CENER.

- **BioPest** - Bioinsecticidas «a la carta» basados en Bacillus thuringiensis (Gobierno de Navarra, Ayudas a Centros Tecnológicos y Organismos de investigación/ Proyectos I+D).

 Líder del proyecto: CENER.

- **SCHMO**. Standardized characterization with different methodologies and orientations of parabolic trough collectors. (SFERA2)

 Líder del Proyecto. CNRS, Francia.

- **ITR**. Inspección de tubos receptores. (Gobierno de Navarra, Ayudas a Centros Tecnológicos y Organismos de investigación/ Proyectos I+D).

 Líder del proyecto: CENER – ACCIONA.

Gracias a toda esta actividad investigadora el departamento se ha visto reforzado con nuevas capacidades de diseño, y se han fortalecido y creado alianzas con otros centros de investigación, centros tecnológicos y empresas del sector tanto a nivel nacional como internacional.

Por otro lado, el departamento de Solar Térmica participa activamente en la European Energy Research Alliance (EERA), coordinando el paquete de trabajo denominado Point focus technologies, de reciente creación dentro del Joint Program de Concentrating Solar Power JP-CSP. Así como en la European Solar Thermal Technology Platform on Renewable Heating & Cooling en la que somos miembros del Steering Committee. El departamento de solar térmica participa también activamente en diferentes foros nacionales como son la plataforma Solar Concentra, y la asociación de la industria Protermosolar y los comités de estandarización de AENOR.

Departamento de Biomasa

El Departamento de BIOMASA de CENER realiza actividades de investigación aplicada en energía de
Las ciudades y edificios, con dos líneas estratégicas diferentes: a) Diseño de Edificios y Ciudades Inteligentes y Energéticamente Eficientes, y b) Eficiencia Energética y Análisis de datos.

Durante el año 2016 se ha realizado una intensa actividad en proyectos de I+D, siendo los más relevantes los siguientes:

- **EU-GUGLE.** Coordinadores del proyecto, consistente en el desarrollo de 6 proyectos piloto de rehabilitación energética en 6 ciudades de Europa. Financiado por el 7º programa Marco de la UE, en la convocatoria Smart Cities 2012.

- **LIFEZEROSTORE** -Supermarket retrofit for zero energy consumption (LIFE). Proyecto cuyo objetivo es el desarrollo de una solución de trigeneración energética basado in biomasa para supermercados.

- **PCM FAÇADE** – Proyecto de I+D Regional (Navarra). Desarrollo de un sistema de fachada industrializada, de elevadas prestaciones energéticas, con incorporación de materiales de cambio de fase – PCMs.

- **CAPE** – Proyecto de I+D Regional (Navarra). Desarrollo de un sistema de cubierta industrializada, fabricada con materiales de base biológica y con integración de energías renovables para la rehabilitación energética de edificios.

- **Smart CLIMA** – Estudio de viabilidad de un módulo SIBER de climatización mediante sistemas termoeléctricos acoplado al recuperador de calor en ventilación de doble flujo.

Departamento de Energética Edificatoria

El Departamento de Energética Edificatoria de CENER desarrolla proyectos de I+D y servicios tecnológicos sobre aplicaciones de la energía en la ciudad, y especialmente en los edificios, basados en la eficiencia energética y la integración de las energías renovables en los entornos urbanos, en el contexto de las ciudades inteligentes o «smart cities» y del estándar de «edificio de consumo de energía casi nulo» definido por la Comisión Europea.

El departamento DEE desarrolla soluciones y sistemas energéticos que permitan reducir drásticamente en consumo de energía fósil en nuestras ciudades y edificios, con dos líneas estratégicas diferentes: a) Diseño de Edificios y Ciudades Inteligentes y Energéticamente Eficientes, y b) Eficiencia Energética y Análisis de datos.
(Gobierno de Navarra, Ayudas a Centros Tecnológicos y Organismos de investigación/ Proyectos I+D).

Líder del proyecto: CENER.

Departamento de Integración en Red

El Departamento de Integración en Red de Energías Renovables tiene como objetivo la investigación y el desarrollo de los sistemas que permitan una mayor y mejor integración de las energías renovables en la red eléctrica.

El departamento cuenta con dos principales áreas de actividad, Área de Integración en Red que incluye aspectos relacionados con generación distribuida, smart grids, estudio de redes y alta tensión y el Área de Almacenamiento de Energía que incluye ensayos y caracterización de equipos en operación real e ingeniería conceptual y modelos de negocio.

Los principales proyectos de I+D en 2016 han sido:

• **SyMMETRI** – Smart Campus: Gestión de microrredes electro térmicas. (Gobierno de Navarra, Ayudas a Centros Tecnológicos y Organismos de investigación/ Proyectos I+D).

 Líder del proyecto: CENER.

• Proyectos de la microrred ATENEA (Regional)

 – **Optimización de estrategias de gestión** en la microrred ATENEA basado en nuevos algoritmos de predicción.

 – Mejora del **sistema de adquisición de datos** de la microrred ATENEA: análisis y mejora del protocolo de comunicaciones y el sistema de control, supervisión y adquisición de datos (SCADA).

 – Desarrollo de **nuevos modos de control y gestión** de microrredes basados en convertidores con técnica droop.

 – **Análisis del funcionamiento en modo aislado** de una microrred basada en fotovoltaica+diesel con sistema de almacenamiento.

 – **Caracterización, desarrollo de modelo y simulación de una microturbina de gas** con recuperación térmica (calor y frío) para aplicaciones en Microrredes.

 Control de un banco de ensayos con LABVIEW para simulación, estudio y aplicación de algoritmos de seguimiento de máxima potencia en generación eólica aplicado al aerogenerador bip

10.9. **CENTRO NACIONAL DEL HIDRÓGENO (CNH2)**

El Centro Nacional de Experimentación de Tecnologías de Hidrógeno y Pilas de Combustible (en adelante Centro Nacional del Hidrógeno o CNH2), con sede en Puertollano (Ciudad Real) y creado en 2007, es un Consorcio Público entre el Ministerio de Economía, Industria y Competitividad y la Junta de Comunidades de Castilla-La Mancha, con una participación del 50% cada uno. Desde mayo
de 2015, el CNH2 está adscrito a la Administración General del Estado.
Su objetivo es la investigación científica y tecnológica en todos los aspectos relativos a las tecnologías del hidrógeno y pilas de combustible, al servicio de toda la comunidad científica y tecnológica, en todo el ámbito nacional e internacional. Dentro de este objetivo se incluyen:

- la utilización en la instalación de los avances científicos que se consigan en los grupos de investigación nacionales e internacionales,
- la transmisión del conocimiento científico conseguido y su escalado para su aplicación en desarrollos tecnológicos de utilidad,
- la investigación y demostración de procesos de transformación energética utilizando el hidrógeno como portador energético y su aplicación final en todos los usos posibles.

Igualmente, se incluye el uso de la instalación como centro de los procesos de ensayo, caracterización, homologación, certificación o validación de desarrollos tecnológicos obtenidos por el sector productivo para mejorar la competitividad de las empresas y así fomentar la introducción en el mercado nacional de las tecnologías del hidrógeno y las pilas de combustible.

El CNH2 busca ser centro de referencia a nivel nacional en su ámbito a través de las siguientes vías:

- Aunando los esfuerzos y trabajos de los grupos de investigación,
- como conexión con la industria y la sociedad,
- impulsando la transferencia de tecnología,
- apoyando a la creación de empresas de base tecnológica,
- colaborando en el desarrollo de normativa y estándares tecnológicos,
- realizando y fomentando las actividades de difusión, formación y divulgación de la tecnología,
- actuando como centro de debate para fomentar la implantación de la economía del hidrógeno,
- realizando informes, estudios y documentos que lo apoyen y
- orientando a otros centros de investigación en las actividades necesarias para el desarrollo del sector.

Todo ello, en contacto continuo con centros internacionales de referencia en su ámbito.

El CNH2 se organiza en un Departamento de Gerencia, tres áreas dependientes de Dirección y cinco Unidades que desarrollan actividades específicas dentro de una o varias áreas temáticas:

- La Dirección es la responsable de dirigir y administrar el CNH2, así como velar por su excelencia científica. De ella depende las siguientes áreas:

 - Las Relaciones Institucionales es el vínculo entre el CNH2 y el exterior, ocupándose de la
La Unidad de Simulación y Control se centra en la electrónica de potencia, la simulación eléctrica, la operación de redes eléctricas, los sistemas eléctricos, electrónicos o de control, la ingeniería térmica, la mecánica de fluidos y la simulación TFD.

La Unidad de Investigación está orientada a la investigación básica con el desarrollo de plantas piloto de fabricación de componentes o sistemas, teniendo además capacidad para la caracterización de materiales, la fabricación de prototipos, el ensayo y validación de materiales y el escalado desde escala de laboratorio hasta la semi-industrial.

Las principales líneas de investigación que se desarrollan en el CNH2 son:

- **Producción de hidrógeno**: mediante diferentes métodos, fundamentalmente centrados en electrolisis con tecnologías PEM y alcalina, y siempre buscando priorizar la obtención de hidrógeno a partir de fuentes renovables y con las mínimas emisiones.

- **Almacenamiento de hidrógeno**: fundamentalmente hidrógeno gaseoso a altas presiones, y almacenado de forma química en forma de hidruros metálicos.

- **Transformación de hidrógeno**: básicamente en energía eléctrica a través de pilas de combustible de diferentes tecnologías (tecnología PEM, tecnología SOFC), pero sin obviar otros usos como su uso combinado con CO2 para la producción de Gas Natural Sintético (GNS, proceso PowerToGas).
INVESTIGACIÓN Y DESARROLLO EN EL SECTOR ENERGÉTICO

- **Integración de sistemas**: estacionales, portátiles y transporte.
- Implantación tecnológica de los procesos y tecnologías investigados.
- Normativa en el ámbito del hidrógeno y las pilas de combustible.

El equipamiento científico-técnico del Centro Nacional del Hidrógeno se distribuye en trece laboratorios:

I. **Laboratorio de Electrólisis Alcalina**.

II. **Laboratorio de Investigación y Escalado de Tecnología PEM**.

III. **Laboratorio de Electrónica de Potencia**.

IV. **Laboratorio de Microrredes**.

V. **Laboratorio de Simulación**.

VI. **Laboratorio de Caracterización de Materiales**.

VII. **Laboratorio de Óxido Sólido**.

VIII. **Laboratorio de Fabricación (FAB-LAB)**.

IX. **Laboratorio de Almacenamiento**.

X. **Laboratorio de Testeo de Tecnología PEM**.

XI. **Laboratorio de Vehículos e Hidrogenera**.

XII. **Laboratorio de Integración Doméstica**.

XIII. **Laboratorio de Biotecnologías del Hidrógeno**.

El Centro dispone además de una serie de instalaciones auxiliares que prestan servicio a todos los laboratorios:

I. **Taller de Fabricación de Prototipos**.

II. **Demostrador de Edificio Energéticamente Eficiente**.

III. **Planta fotovoltaica de 100 kW que alimentan el demostrador de edificio eficiente energéticamente**.

IV. **Un punto de repostaje de hidrógeno para vehículos o hidrogenera a 350 bar**.

V. **Un punto de recarga para vehículos eléctricos ligeros (bicicletas y ciclomotores)**.

VI. **Un parque de almacenamiento de hidrógeno a 10, 200 y 450 bar**.

VII. **Una nave para plantas piloto**.

Adicionalmente, el CNH2 dispone de una Unidad de Cultura Científica y de la Innovación, UCC+iCNH2, perteneciente a la red de UCC+i que la Fundación Española para la Ciencia y la Tecnología (FECYT) gestiona. El objetivo principal de la UCC+i CNH2 es acercar la ciencia, la tecnología y la innovación del hidrógeno y pilas de combustible a los ciudadanos, acortando distancias entre el mundo científico y tecnológico y la sociedad en general, así como facilitando la difusión de la I+D+i de las citadas tecnologías y de los proyectos.
científicos y tecnológicos en desarrollo a través de diferentes actividades y talleres de divulgación.

10.10. ACTIVIDADES Y PROYECTOS DE I+D DESTACADOS DEL CNH2 EN 2016

1. Proyectos en colaboración financiados por entidades internacionales:

• Proyecto HyACINTH presentado a la convocatoria FCH-JU-2013-1 de la Iniciativa Tecnológica Conjunta de Hidrógeno y Pilas de Combustible (FCH-JU), cuenta con la participación de once entidades de cinco países europeos y está coordinado por el CNH2. Su objetivo es alcanzar un mayor conocimiento a nivel europeo sobre la aceptación social de las tecnologías del hidrógeno y de las pilas de combustible y de sus aplicaciones con el fin de desarrollar una herramienta que facilite el desarrollo de productos y su introducción en el mercado.

2. Proyectos en colaboración financiados por entidades nacionales:

• Proyecto ENHIGMA, convocatoria Retos-Collaboración 2016 del Ministerio de Economía y Competitividad. El objetivo del proyecto es obtener un electrolizador PEM de mayor durabilidad y menor consumo energético, a través de la optimización del diseño y de los materiales de las placas bipolares que lo componen. El consorcio está formado por: Adix Ingeniería, Hidrógena, ITECAM, Asociación de la Industria Navarra, Flubetech y CNH2.

• Proyecto CONFIGURA, convocatoria Retos-Investigación 2016 del Ministerio de Economía y Competitividad. El objetivo es desarrollar distintas estrategias de control en el marco del Control Predictivo para gestionar de manera eficiente la operación de microrredes, abordando la reconfigurabilidad tanto de los componentes de una microred, como de microrredes interconectadas. Las entidades participantes son la Universidad de Sevilla, el Centro Nacional del Hidrógeno (CNH2) y el INTA.

• Proyecto SHIPS4BLUE, Programa I+ C2016 de Apoyo a Proyectos de I+D del Gobierno de Cantabria. El objetivo del proyecto es evaluar la viabilidad técnica de la utilización de la tecnología de electrólisis comercial seleccionada para esta aplicación específica, así como analizar los sistemas de almacenamiento del hidrógeno producido vía electrólisis, de manera que se lleve a cabo el diseño de una solución optimizada para el almacenamiento de energía a bordo del buque. El consorcio está formado por: Calvo Construcciones y Montaje S.L., Bound4Blue S.L., Fundación Instituto de Hidráulica Ambiental de Cantabria (FIHAC), Centro Nacional del Hidrógeno (CNH2).

• Proyecto UCCI2017, Convocatoria de ayudas 2016 para el fomento de la cultura científica, tecnológica y de la innovación (FECYT). El objetivo principal es acercar la ciencia y tecnologías del hidrógeno y pilas de combustible a la sociedad mediante el desarrollo de actividades de divulgación científica.
tanto el comportamiento de las celdas electro-líticas, como el estudio de todos los subsiste-
mas y elementos que forman parte del balance de planta (BoP) del electrolizador.

• Proyecto MOVIPEM. (Diseño y fabricación de pila PEM de baja potencia con placas bipolares recubiertas para aplicaciones móviles). El pro-
yecto tiene como objetivo principal el diseño, fabricación, puesta en funcionamiento y caracterización de una pila de combustible PEM de 500W, de alta densidad de potencia específica y volumétrica, utilizando placas bipolares met-tálicas recubiertas.

• Proyecto RENOVAGAS, convocatoria Retos-
Colaboración 2014 del Ministerio de Econo-
mía y Competitividad. El objetivo principal del pro-
yecto es el desarrollo de una planta piloto de produc-
ducción de gas natural sintético (GNS) a partir de la produc-
ción electrolítica de hidróge-
no mediante energías renovables, y su meta-
nación mediante su combinación con una co-
rriente de biogás, de manera que el gas natural
obtenido sea totalmente renovable y pueda ser
inyectado directamente en la red de gas na-
tural. El consorcio para llevar a cabo este pro-
yecto está formado por: Enagas, FCC-Aqualia,
Abengoa Hidrógeno, Gas Natural Fenosa, Tec-
nalia, ICP-CSIC y CNH2.

Proyectos internos estratégicos:

• Proyecto DEPHEGA3. (Desarrollo y Valida-
ción de un modelo en HYSYS para la simula-
ción de un sistema de electrólisis alcalina para
la producción de hidrógeno a partir de EERR).
El principal objetivo es el desarrollo y validación experimental de un modelo para la simulación de sistemas de electrolisis alcalina que integre,
Las Entidades, Plataformas o Asociaciones de las que es miembro son:

- Asociación Española del Hidrógeno (AeH2). Miembro de la Junta Directiva.

- Asociación Española de Pilas de Combustible (APPICE). Miembro de la Junta de Gobierno.

- Plataforma Tecnológica Española del Hidrógeno y las Pilas de Combustible (PTE-HPC). Miembro del Grupo Rector y de todos los grupos de trabajo.

- Plataforma Tecnológica Española de Seguridad Industrial (PESI).

- Plataforma Tecnológica de Redes Eléctricas (FUTURE).

- Plataforma Tecnológica Ferroviaria Española (PTFE).

- Plataforma Tecnológica Española de Automoción y Movilidad (MOVE2FUTURE).

- Red de Unidades de Cultura Científica y de la Innovación (Red UCC+i) de la FECYT.

- Asociación Española de Normalización y Certificación (AENOR).

- Comité Técnico de Normalización en Tecnologías de Hidrógeno AENOR/CTN-181.

- Comité Técnico de Normalización en Sistemas de Almacenamiento de Energía Eléctrica CTN218.

- Alianza por la Investigación y la Innovación Energéticas (ALINNE).
• European Research Grouping on Fuel Cells and Hydrogen (N-ERGHY).

• Safety of Hydrogen as an Energy Carrier (HYS-AFE).

• European Energy Research Alliance (EERA), miembro del programa de trabajo de almacenamiento de energía y de hidrógeno y pilas de combustible.

• Technology Collaboration Programme on Advanced Fuel Cells (AFC TCP).
11. REDES DE TRANSPORTE DE ENERGÍA
En este Capítulo se indican las inversiones y las puestas en servicio realizadas en 2016 en infraestructuras de transporte de electricidad y de gas recogidas en las planificaciones. Asimismo, se incluye información sobre la evolución de dichas infraestructuras y sobre la situación y aspectos más destacados referentes a los almacenamientos de reservas estratégicos de productos petrolíferos.

Mediante Acuerdo del Consejo de Ministros de 16 de octubre de 2015, se aprobó el documento de «Planificación Energética. Plan de Desarrollo de la Red de Transporte de Energía Eléctrica 2015-2020», previsto en el artículo 4 de la Ley 24/2013, de 26 de diciembre, del Sector Eléctrico y publicado por Orden IET/2209/2015, de 21 de octubre (BOE n.º 254, de 23 de octubre de 2015).

Respecto a las interconexiones internacionales, en 2015, se puso en servicio la interconexión España-Francia por los Pirineos orientales, un proyecto de gran relevancia por su influencia en la calidad y seguridad del suministro y en la capacidad de integración de energías renovables. A pesar de ello, la necesidad de incrementar la capacidad de interconexión con el sistema europeo sigue siendo una prioridad para el sistema eléctrico español, como ha quedado refrendado en junio de 2015 con la creación de un grupo de alto nivel, integrado por la Comisión Europea, Francia, Portugal y España, para impulsar proyectos clave de infraestructuras energéticas en el suroeste de Europa. También a finales de 2015 se puso en servicio la estación de compresión de gas de Euskadour, que incrementa la capacidad técnica de intercambio de gas entre España y Francia por lo que estaba expresamente excluida de la suspensión de autorización administrativa de nuevos gasoductos de transporte y estaciones de regulación y medida en virtud de la Disposición transitoria cuarta del Real Decreto-ley 13/2012.

11.1. REDES ELÉCTRICAS. REALIZACIONES EN 2016

El desarrollo de la red de transporte experimentó durante el 2016 un nuevo impulso con la puesta en servicio de instalaciones que refuerzan la fiabilidad, el grado de mallado de la red y permiten incorporar mayor cantidad de potencia renovable. Durante el 2016 se pusieron en servicio 674 km de circuito y 61 posiciones de subestación, lo que situaba la longitud de circuito total de la red nacional en 43.800 km y 5.609 posiciones al finalizar el año. Por su parte, la capacidad de transformación aumentó en 350 MVA (con un aumento de 600 MVA y una reducción de 250 MVA en Canarias), elevando el total de la capacidad instalada de transformación nacional a 85.144 MVA.

En términos de inversión, la ampliación y mejora de la red de transporte eléctrica realizada por Red Eléctrica en España ha alcanzado, en cifras provisionales, los 399 millones de euros, lo que ha
supuesto un descenso del 2,9% respecto al año anterior y la continuación de la tendencia decreciente iniciada en 2010 para adecuar el nivel de inversiones a las necesidades reales del sistema eléctrico.

Entre los proyectos llevados a cabo en 2016 destacan los siguientes según la zona geográfica de su desarrollo:

Andalucía: se ha continuado con los trabajos para el aumento de capacidad de una buena parte de la red de 220 kV de Andalucía, que permitirán reducir las sobrecargas que se vienen produciendo y los consiguientes redespachos de la generación necesarios para eliminarlas. Las líneas afectadas han sido: T-Casares-Los Ramos, Algeciras-Puerto Real, Carmona-Villanueva del Rey-Almodóvar, Almodóvar-Casillas-Lancha y Carmona-Guillena-Santiponce.

CUADRO 11.1. INVERSIONES EN REDES ELÉCTRICAS DE TRANSPORTE (MILLONES DE EUROS)

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016 %16/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversiones en la red de transporte</td>
<td>865</td>
<td>819</td>
<td>672</td>
<td>564</td>
<td>493</td>
<td>411.0</td>
<td>399.0</td>
</tr>
</tbody>
</table>

(1) No incluye adquisiciones de redes existentes propiedad de otras empresas.
(2) Inversiones en la red de transporte.
FUENTE: Informe Anual 2016.

CUADRO 11.2. INSTALACIONES DE LA RED DE TRANSPORTE EN ESPAÑA.

<table>
<thead>
<tr>
<th></th>
<th>400 kV</th>
<th>≤ 220 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Península</td>
<td>Península</td>
</tr>
<tr>
<td>Total líneas (km)</td>
<td>21.620</td>
<td>19.026</td>
</tr>
<tr>
<td>Líneas aéreas (km)</td>
<td>21.503</td>
<td>18.259</td>
</tr>
<tr>
<td>Cable submarino (km)</td>
<td>29</td>
<td>236</td>
</tr>
<tr>
<td>Cable subterráneo (km)</td>
<td>88</td>
<td>531</td>
</tr>
<tr>
<td>Transformación (MVA)</td>
<td>79.808</td>
<td>63</td>
</tr>
</tbody>
</table>

Datos de kilómetros de circuito y de capacidad de transformación acumulados a 31 de diciembre de 2016.
FUENTE: REE.

CUADRO 11.3. GRÁFICO DE LA EVOLUCIÓN DE LA LONGITUD DE LA RED DE TRANSPORTE

FUENTE: REE.

Datos del 2016 provisionales pendientes de auditoría en curso.
Aragón: se puso en operación la subestación de Mudéjar 400 kV, conectada mediante una doble entrada/salida con el doble circuito Aragón-Teruel 400 kV. Estas instalaciones forman parte de un conjunto más amplio que permitirá el mallado de la red de transporte en 400 kV entre las comunidades de Aragón y Valencia. El objetivo de estos desarrollos es incrementar las posibilidades de evacuación de generación de origen renovable al tiempo que se incrementa la calidad, fiabilidad y seguridad de suministro. Por otra parte, el apoyo a la red de distribución se refuerza con la sustitución de una unidad de transformación 220/110 kV en Cinca, mientras que el apoyo de la red de 400 kV a la red de 220 kV en Mequinenza se refuerza con la sustitución de una unidad 400/220 kV. Asimismo, se puso en servicio una reactancia en la subestación de Mezquita 400 kV. La instalación de esta nueva reactancia permitirá por una lado mantener el perfil de tensiones en la red de transporte de la zona dentro de los valores establecidos en los Procedimientos de Operación, sin tener que recurrir a la apertura de líneas con la consiguiente pérdida de calidad, fiabilidad y seguridad de suministro.

Canarias: continuaron los trabajos del plan de mejora de las infraestructuras canarias con objeto de aumentar la fiabilidad de las instalaciones ya existentes. Asimismo, en 2016 se ha puesto en servicio la subestación de Sabinal 220/66 kV y Muelle Grande 66 kV, actuaciones clave para la mejora de la seguridad del suministro en el sistema de Gran Canaria.

Castilla-León: continuaron los trabajos de construcción del eje Tordesillas–Galapagar–San Sebastián de los Reyes (SUMA) 400 kV para el mallado entre Castilla y León y Madrid, en el tramo correspondiente a la Comunidad de Madrid.

Cataluña: continuó el avance en el refuerzo de la red de transporte del entorno del área metropolitana de Barcelona, con la puesta en servicio de la línea subterránea Coll Blanca–Facultats–Trinitat 220 kV. Igualmente, se ha incrementado el mallado de la subestación Gavarrot 220 kV al conectarse mediante cables con las subestaciones Begues y Sant Boi 220 kV. El apoyo a la red de distribución en la zona de Vic se refuerza con la sustitución de una unidad de transformación 220/25 kV.

Castilla La Mancha: se prosiguió con el ambicioso plan previsto de instalación de nuevas reactancias, para facilitar el control de la tensión eléctrica, como la que se ha llevado a cabo con la puesta en tensión de la reactancia situada en la subestación Brazatortas 400 kV.

Baleares: sigue trabajando en el mallado de la red de transporte para mejorar la seguridad y la calidad de suministro. Se ha puesto en servicio la ampliación de la subestación San Juan 66 kV para apoyo de a la demanda, así como la nueva subestación Cala Blava 132 kV. Destaca por su importancia en lo que a fiabilidad y seguridad del suministro se refiere, la puesta en servicio del segundo enlace a 132 kV entre las subestaciones de Santa Ponsa y Torrent, que refuerza aún más los subsistemas Mallorca-Menorca e Ibiza-Formentera.

Extremadura: se puso en tensión la línea a 220 kV Plasencia-EAlmaraz mediante el cambio de tensión de la antigua línea de 132 kV. Han continuado los trabajos en el eje de 220 kV J.M. Oriol-Los
Arenales (Cáceres)-Trujillo y siguen avanzando las tramitaciones sobre dos nuevas subestaciones: Cañaveral y Carmonita para la alimentación del tren de alta velocidad.

Levante: cabe reseñar la puesta en servicio de la subestación de Torremendo 400/220 kV, para mejorar la seguridad de suministro en el eje costero de 220 kV entre Alicante y Murcia, conectado mediante una entrada/salida con el circuito Escombreras-Rocamora 400 kV y a través de un doble circuito a 220 kV con San Miguel de Salinas. Destaca también la puesta en servicio de la subestación de Godelleta 400/220 kV para mejorar la seguridad de suministro en Valencia capital, conectado mediante una entrada/salida con el circuito Catadau-Requena 400 kV y mediante una entrada/salida con el circuito Cofrentes-Eliana 400 kV. Continúa el desarrollo de la red de transporte con el cambio tensión de 132 kV a 220 kV entre las subestaciones de Bernat y Valldigna con objeto de mejorar la alimentación de la zona.

Zona centro: en Madrid se ha reforzado el apoyo a la red de distribución con las ampliaciones vía transformador de distribución en las subestaciones de Algete 220 kV y Antonio Leyva 220 kV.

Zona norte: con el objeto de aumentar la capacidad de evacuación de energía, de permitir la integración de energías renovables y reforzar la red de transporte de la zona, se han continuado los trabajos en las actuaciones de red planificadas en la zona de Navarra y País Vasco, que incluyen un nuevo eje de 400 kV que, pasando por Ichaso, conectará el oeste del País Vasco (eje Abanto-Güeñes) con la red de 400 kV de Navarra (eje Muruarte-Castejón). Se ha continuado el avance en la construcción de otros tramos del eje Norte, en especial la conexión entre las subestaciones de Boimente y Pesoz 400 kV.

Interconexiones internacionales

Para que el funcionamiento del sistema eléctrico sea realmente eficaz, se hace necesario el fortalecimiento de las interconexiones internacionales, que son fundamentales para reforzar la seguridad de suministro, optimizar los recursos energéticos, proporcionar una mayor y mejor integración de energías renovables en la red europea, e incrementar la competitividad de los mercados eléctricos.

La capacidad total de intercambio efectivo entre dos países no depende sólo de las capacidades nominales de las líneas que cruzan la frontera sino también de la red conexa, del reparto de flujos eléctricos con el resto de interconexiones y de la ubicación de los centros de generación y puntos de consumo. Por este motivo, la suma de las capacidades nominales de las líneas que cruzan la frontera puede ser notablemente inferior a la capacidad efectiva total.

En la actualidad España se encuentra interconectada eléctricamente con Francia, Andorra, Portugal y Marruecos. La **conexión con Francia** se lleva a cabo mediante 4 líneas: Hernani-Argia 400 kV, Arkale-Argia 220 kV, Biescas-Pragnères 220 kV y Vic-Baixas 400 kV. El proyecto de interconexión en corriente continua por los Pirineos orientales puesto en servicio en el último trimestre de 2015...
permite duplicar la capacidad de intercambio eléctrico con este país de manera que, alcanzará un total de unos 2.200-2.800 MW.

La conexión con Andorra se lleva a cabo mediante la línea Benós-Lac D’Oo 150 kV.

Por su parte, la conexión con Portugal se realiza mediante 11 líneas: Cartelle-Lindoso 400 kV, Conchas-Lindoso 132 kV, Aldeadavila-Lagoaça 400 kV, Aldeadavial-Pocinho 1 y 2 220 kV, Sauce-lle-Pocinho 220 kV, Cedillo-Falagueira 400 kV Badajoz-Alcáçovas 66 kV, Brovales-Alqueva 400 kV, Rosal de la Frontera-V.Ficalho 15 kV y Puebla de Guzmán-Tavira 400 kV, puesta en servicio en mayo de 2014. Estas líneas suman una capacidad total de intercambio de entre 2.200 y 3.000 MW. Está previsto incrementar esta capacidad mediante la construcción de una nueva línea de 400 kV por Galicia que permitirá alcanzar una capacidad de intercambio total, junto con el resto de las existentes de unos 4.300 MW.

En cuanto a la interconexión con Marruecos, ésta se lleva a cabo mediante 2 cables eléctricos submarinos que en total proporcionan una capacidad de intercambio de unos 800 MW. Actualmente, no está previsto incrementar la capacidad de esta interconexión.

A continuación, se muestra el ratio de interconexión de España con Portugal y Francia y el de la Península Ibérica con Francia. Se consideran los valores de capacidad de intercambio a disposición de REE y se dan dos valores, uno con el percentil 70 (en línea con ENTSO-E) y otro con el valor máximo (permite ver más claramente el incremento de capacidad de interconexión en el mismo año en que se mejora ésta). No ha habido cambios respecto al año anterior.

La capacidad de intercambio de España respecto a su potencia instalada se encuentra aún por debajo del 10 % recomendado por la Unión Europea para el año 2020, de ahí la importancia del impulso realizado por el Gobierno de España y el Consejo Europeo en materia de interconexiones eléctricas internacionales. En esta línea, se continúa trabajando en lo acordado en la Declaración de Madrid-Cumbre para las Interconexiones energéticas, celebrada entre España, Francia, Portugal, la Comisión Europea y el Banco Europeo de Inversiones en Madrid el 4 de marzo de 2015 esto es necesario para que la Península Ibérica deje de ser una isla energética y para que sea posible crear un verdadero mercado europeo de la energía de acuerdo al nuevo paquete legislativo de la UE presentado el 30 de noviembre de 2016 (el denominado «paquete de invierno» que se comenta en otros capítulos de esta publicación).

CUADRO 11.4. RATIO DE INTERCONEXIÓN

<table>
<thead>
<tr>
<th>Ratio interconexión</th>
<th>Percentil 70</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>España</td>
<td>3.20%</td>
<td>3.60%</td>
</tr>
<tr>
<td>Península</td>
<td>1.01%</td>
<td>1.10%</td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>España</td>
<td>3.28%</td>
<td>4.17%</td>
</tr>
<tr>
<td>Península</td>
<td>1.01%</td>
<td>1.10%</td>
</tr>
<tr>
<td>2015 y 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>España</td>
<td>4.28%</td>
<td>6.91%</td>
</tr>
<tr>
<td>Península</td>
<td>1.10%</td>
<td>2.49%</td>
</tr>
</tbody>
</table>
Adicionalmente el documento de Planificación 2015-2020 incluye un Anexo en el que, con carácter no vinculante, se recogen las infraestructuras de la red de transporte de electricidad que se estima necesario poner en servicio durante los años posteriores al horizonte de la planificación (Post 2020). La inclusión de una instalación en este Anexo permitirá el inicio de los trámites administrativos pertinentes de la referida instalación.

Al tener un horizonte temporal de ejecución mayor, este anexo recoge las siguientes interconexiones con Francia:

- País Vasco (Gatica)- Francia
- Las dos alternativas: País Vasco (Ichaso)- Francia o Navarra (Muruarte)- Francia
- Aragón (Ejea de los Caballeros)- Francia

Durante 2016 se han seguido gestionando los proyectos de las tres nuevas interconexiones: una submarina a través del golfo de Vizcaya y dos interconexiones transpirenaicas por Navarra y Aragón. El desarrollo de estos proyectos, con una capacidad de intercambio prevista de 8 GW, va dirigido al reto de alcanzar en el 2030 un 15% de capacidad de interconexión respecto a la potencia instalada en nuestro país. Asimismo, para mejorar la interconexión España-Francia, se ha incluido en el horizonte 2015-2020 un desfasador en la línea Arkale-Argia 220 kV (previsto para 2017).

A continuación, se muestra mayor información sobre las infraestructuras eléctricas.

CUADRO 11.5.- LÍNEAS DE TRANSPORTE A 400 KV PUESTAS EN SERVICIO

<table>
<thead>
<tr>
<th>Línea</th>
<th>Autónoma</th>
<th>Nº circuitos</th>
<th>Circuito</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/S Godelleta L/Catadau-Requena</td>
<td>Valencia</td>
<td>2</td>
<td>19,1</td>
</tr>
<tr>
<td>E/S Godelleta L/Cofrentes-La Eliana</td>
<td>Valencia</td>
<td>4</td>
<td>4,0</td>
</tr>
<tr>
<td>E/S Mudéjar L/Aragón-Teruel</td>
<td>Aragón</td>
<td>3</td>
<td>1,9</td>
</tr>
<tr>
<td>E/S Torremendo L/Escombreras-Rocamora</td>
<td>Valencia</td>
<td>2</td>
<td>4,2</td>
</tr>
<tr>
<td>L/Boimante -Pezoz</td>
<td>Galicia/Asturias</td>
<td>2</td>
<td>163,5</td>
</tr>
<tr>
<td>L/Mezquita- Morella</td>
<td>Aragón/Valencia</td>
<td>6</td>
<td>243,5</td>
</tr>
<tr>
<td>Total peninsular</td>
<td></td>
<td></td>
<td>436,1</td>
</tr>
<tr>
<td>Total nacional</td>
<td></td>
<td></td>
<td>436,1</td>
</tr>
</tbody>
</table>

Datos provisionales pendientes de auditoría en curso. **FUENTE:** REE.
Cuadro 11.6. Líneas de transporte a 220 kV o tensiones inferiores puestas en servicio

<table>
<thead>
<tr>
<th>Línea</th>
<th>Tensión</th>
<th>Comunidad Autónoma</th>
<th>Nº circuitos</th>
<th>km de circuito</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/S Gavarrot L/Begues-Santboi</td>
<td>220</td>
<td>Cataluña</td>
<td>2</td>
<td>3,1</td>
</tr>
<tr>
<td>E/S Gavarrot L/Begues-Santboi (S)</td>
<td>220</td>
<td>Cataluña</td>
<td>2</td>
<td>1,2</td>
</tr>
<tr>
<td>E/S Regoelle L/Mazaricos-Vimianzo</td>
<td>220</td>
<td>Galicia</td>
<td>2</td>
<td>0,9</td>
</tr>
<tr>
<td>Ixasos: conexión a reactancia (S)</td>
<td>220</td>
<td>País Vasco</td>
<td>1</td>
<td>0,04</td>
</tr>
<tr>
<td>L/ Andujar-Guadame 2</td>
<td>220</td>
<td>Andalucía</td>
<td>1</td>
<td>23,0</td>
</tr>
<tr>
<td>L/ Bernat (antes Alcira)-Valldigna</td>
<td>220</td>
<td>Valencia</td>
<td>1</td>
<td>0,6</td>
</tr>
<tr>
<td>L/ Cañuelo-Los Barrios (S)</td>
<td>220</td>
<td>Andalucía</td>
<td>1</td>
<td>1,9</td>
</tr>
<tr>
<td>L/ Coll Blanc-Facultat-Trinitat (S)</td>
<td>220</td>
<td>Cataluña</td>
<td>2</td>
<td>23,6</td>
</tr>
<tr>
<td>L/ El Palmar-Murcia (S)</td>
<td>220</td>
<td>Murcia</td>
<td>4</td>
<td>16,6</td>
</tr>
<tr>
<td>L/ Mas Figueres-Palau</td>
<td>220</td>
<td>Cataluña</td>
<td>1</td>
<td>15,5</td>
</tr>
<tr>
<td>L/ Torremendo-San Miguel de Salinas</td>
<td>220</td>
<td>Valencia</td>
<td>2</td>
<td>27,0</td>
</tr>
<tr>
<td>L/ Torremendo-San Miguel de Salinas (S)</td>
<td>220</td>
<td>Valencia</td>
<td>2</td>
<td>0,2</td>
</tr>
<tr>
<td>Total peninsular</td>
<td></td>
<td></td>
<td></td>
<td>103,7</td>
</tr>
<tr>
<td>E/S Sabinal L/ Jinámar-Barranco de Tirajana</td>
<td>220</td>
<td>Canarias</td>
<td>4</td>
<td>3,5</td>
</tr>
<tr>
<td>E/S Sabinal L/ Jinámar-Barranco de Tirajana (S)</td>
<td>220</td>
<td>Canarias</td>
<td>4</td>
<td>1,0</td>
</tr>
<tr>
<td>L/ Murterar-Sant Marti (S)</td>
<td>220</td>
<td>Baleares</td>
<td>1</td>
<td>0,9</td>
</tr>
<tr>
<td>L/ Mallorca-Ibiza (S)</td>
<td>132</td>
<td>Baleares</td>
<td>1</td>
<td>8,4</td>
</tr>
<tr>
<td>L/ Mallorca-Ibiza (SM)</td>
<td>132</td>
<td>Baleares</td>
<td>1</td>
<td>117,1</td>
</tr>
<tr>
<td>E/S Sabinal (S)</td>
<td>66</td>
<td>Canarias</td>
<td>2</td>
<td>0,2</td>
</tr>
<tr>
<td>E/S Sabinal (S)</td>
<td>66</td>
<td>Canarias</td>
<td>2</td>
<td>0,7</td>
</tr>
<tr>
<td>E/S Santa Águeda L/ Arguineguín-Lomo Maspalomas</td>
<td>66</td>
<td>Canarias</td>
<td>2</td>
<td>1,7</td>
</tr>
<tr>
<td>E/S Santa Águeda L/ Arguineguín-Lomo Maspalomas (S)</td>
<td>66</td>
<td>Canarias</td>
<td>2</td>
<td>0,2</td>
</tr>
<tr>
<td>Total no peninsular</td>
<td></td>
<td></td>
<td></td>
<td>133,7</td>
</tr>
<tr>
<td>Total nacional</td>
<td></td>
<td></td>
<td></td>
<td>237,4</td>
</tr>
</tbody>
</table>

(S) Tramo subterráneo (SM) Tramo submarino.
Datos provisionales pendientes de auditoría en curso.

FUENTE: REE.
CUADRO 11.7. AUMENTO DE LA CAPACIDAD DE LÍNEAS

<table>
<thead>
<tr>
<th>Línea</th>
<th>Tensión (kV)</th>
<th>Comunidad Autónoma</th>
<th>Capacidad (MVA) (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/Algeciras-Puerto Real</td>
<td>220</td>
<td>Andalucía</td>
<td>81,1</td>
</tr>
<tr>
<td>L/Almodóvar-Casillas</td>
<td>220</td>
<td>Andalucía</td>
<td>26,2</td>
</tr>
<tr>
<td>L/Almodóvar-Villanueva del Rey</td>
<td>220</td>
<td>Andalucía</td>
<td>38,3</td>
</tr>
<tr>
<td>L/Can Jardi-Rubi</td>
<td>220</td>
<td>Cataluña</td>
<td>1,1</td>
</tr>
<tr>
<td>L/Carmona-Villanueva del Rey</td>
<td>220</td>
<td>Andalucía</td>
<td>65,8</td>
</tr>
<tr>
<td>L/Casillas-Lancha</td>
<td>220</td>
<td>Andalucía</td>
<td>18,1</td>
</tr>
<tr>
<td>L/Cerro Plata-Villaverde</td>
<td>220</td>
<td>Madrid</td>
<td>8,0</td>
</tr>
<tr>
<td>L/Franqueses-La Roca</td>
<td>220</td>
<td>Cataluña</td>
<td>21,3</td>
</tr>
<tr>
<td>L/Guillena-Carmona</td>
<td>220</td>
<td>Andalucía</td>
<td>64,5</td>
</tr>
<tr>
<td>L/Guillena-Santiponce 4</td>
<td>220</td>
<td>Andalucía</td>
<td>35,1</td>
</tr>
<tr>
<td>L/T Casares-Los Ramos</td>
<td>220</td>
<td>Andalucía</td>
<td>82,5</td>
</tr>
<tr>
<td>Total peninsular</td>
<td></td>
<td></td>
<td>442,0</td>
</tr>
<tr>
<td>L/Alcudia B-Pollensa</td>
<td>66</td>
<td>Baleares</td>
<td>8,4</td>
</tr>
<tr>
<td>L/Orlandis-Santa María</td>
<td>66</td>
<td>Baleares</td>
<td>8,5</td>
</tr>
<tr>
<td>Total no peninsular</td>
<td></td>
<td></td>
<td>8,5</td>
</tr>
<tr>
<td>Total nacional</td>
<td></td>
<td></td>
<td>450,5</td>
</tr>
</tbody>
</table>

Datos provisionales pendientes de auditoría en curso.

(1) Capacidad térmica de transporte según el acta de puesta en servicio o el proyecto de ejecución. Esta capacidad puede variar en función de las condiciones de operación y de la estacionalidad (MVA por circuito).

FUENTE: REE.

CUADRO 11.8. PARQUES PUESTOS EN SERVICIO

<table>
<thead>
<tr>
<th>Parque</th>
<th>Tensión kV</th>
<th>Comunidad Autónoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Godelleta</td>
<td>400</td>
<td>Valencia</td>
</tr>
<tr>
<td>Torremendo</td>
<td>400</td>
<td>Valencia</td>
</tr>
<tr>
<td>Godelleta</td>
<td>220</td>
<td>Valencia</td>
</tr>
<tr>
<td>Regoelle</td>
<td>220</td>
<td>Galicia</td>
</tr>
<tr>
<td>Sabinal</td>
<td>220</td>
<td>Canarias</td>
</tr>
<tr>
<td>Torremendo</td>
<td>220</td>
<td>Valencia</td>
</tr>
<tr>
<td>Cala Blava</td>
<td>132</td>
<td>Baleares</td>
</tr>
<tr>
<td>Muelle Grande</td>
<td>66</td>
<td>Canarias</td>
</tr>
<tr>
<td>Sabinal</td>
<td>66</td>
<td>Canarias</td>
</tr>
</tbody>
</table>

Datos provisionales pendientes de auditoría en curso.

FUENTE: REE.

CUADRO 11.9. TRANSFORMADORES PUESTOS EN SERVICIO

<table>
<thead>
<tr>
<th>Subestación</th>
<th>Tensión kV</th>
<th>Comunidad Autónoma</th>
<th>Transformación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Godelleta - AT1</td>
<td>400</td>
<td>Valencia</td>
<td>400/220/600</td>
</tr>
<tr>
<td>Total peninsular</td>
<td></td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>Total nacional</td>
<td></td>
<td></td>
<td>600</td>
</tr>
</tbody>
</table>

(AT) Autotransformador.

Datos provisionales pendientes de auditoría en curso.

FUENTE: REE.
CUADRO 11.10. EVOLUCIÓN DE LA RED DE TRANSPORTE DE 400 Y ≤ 220 KV (KM DE CIRCUITO)

<table>
<thead>
<tr>
<th>Año</th>
<th>400 kV</th>
<th>≤ 220 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>5.595</td>
<td>13.138</td>
</tr>
<tr>
<td>1978</td>
<td>5.732</td>
<td>13.258</td>
</tr>
<tr>
<td>1979</td>
<td>8.207</td>
<td>13.767</td>
</tr>
<tr>
<td>1980</td>
<td>8.518</td>
<td>14.139</td>
</tr>
<tr>
<td>1981</td>
<td>8.906</td>
<td>13.973</td>
</tr>
<tr>
<td>1982</td>
<td>8.975</td>
<td>14.466</td>
</tr>
<tr>
<td>1984</td>
<td>9.998</td>
<td>14.598</td>
</tr>
<tr>
<td>1985</td>
<td>10.781</td>
<td>14.652</td>
</tr>
<tr>
<td>1986</td>
<td>10.978</td>
<td>14.746</td>
</tr>
<tr>
<td>1987</td>
<td>11.147</td>
<td>14.849</td>
</tr>
<tr>
<td>1988</td>
<td>12.394</td>
<td>14.938</td>
</tr>
<tr>
<td>1989</td>
<td>12.533</td>
<td>14.964</td>
</tr>
<tr>
<td>1990</td>
<td>12.686</td>
<td>15.055</td>
</tr>
<tr>
<td>1991</td>
<td>12.883</td>
<td>15.109</td>
</tr>
<tr>
<td>1992</td>
<td>13.222</td>
<td>15.356</td>
</tr>
<tr>
<td>1993</td>
<td>13.611</td>
<td>15.442</td>
</tr>
<tr>
<td>1994</td>
<td>13.737</td>
<td>15.586</td>
</tr>
<tr>
<td>1995</td>
<td>13.970</td>
<td>15.629</td>
</tr>
<tr>
<td>1996</td>
<td>14.084</td>
<td>15.734</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Año</th>
<th>400 kV</th>
<th>≤ 220 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>14.244</td>
<td>15.776</td>
</tr>
<tr>
<td>1998</td>
<td>14.538</td>
<td>15.876</td>
</tr>
<tr>
<td>1999</td>
<td>14.538</td>
<td>15.975</td>
</tr>
<tr>
<td>2000</td>
<td>14.918</td>
<td>16.078</td>
</tr>
<tr>
<td>2001</td>
<td>15.364</td>
<td>16.121</td>
</tr>
<tr>
<td>2002</td>
<td>16.067</td>
<td>16.296</td>
</tr>
<tr>
<td>2003</td>
<td>16.592</td>
<td>16.344</td>
</tr>
<tr>
<td>2004</td>
<td>16.841</td>
<td>16.464</td>
</tr>
<tr>
<td>2005</td>
<td>16.846</td>
<td>16.530</td>
</tr>
<tr>
<td>2006</td>
<td>17.052</td>
<td>16.753</td>
</tr>
<tr>
<td>2007</td>
<td>17.191</td>
<td>16.817</td>
</tr>
<tr>
<td>2008</td>
<td>17.765</td>
<td>17.175</td>
</tr>
<tr>
<td>2009</td>
<td>18.056</td>
<td>17.307</td>
</tr>
<tr>
<td>2010</td>
<td>18.792</td>
<td>17.401</td>
</tr>
<tr>
<td>2011</td>
<td>18.792</td>
<td>18.001</td>
</tr>
<tr>
<td>2012</td>
<td>18.792</td>
<td>18.001</td>
</tr>
<tr>
<td>2013</td>
<td>20.109</td>
<td>18.370</td>
</tr>
<tr>
<td>2014</td>
<td>20.639</td>
<td>18.643</td>
</tr>
<tr>
<td>2015</td>
<td>21.094</td>
<td>18.782</td>
</tr>
<tr>
<td>2016</td>
<td>(1)</td>
<td>21.184</td>
</tr>
</tbody>
</table>

(1) Datos provisionales pendientes de auditoría en curso.
FUENTE: REE.

CUADRO 11.11.- GRÁFICO DE EVOLUCIÓN DE LA RED DE TRANSPORTE PENINSULAR DE 400 Y ≤ 220 KV (KM DE CIRCUITO)

(1) Datos provisionales pendientes de auditoría en curso.
FUENTE: REE.
REDES DE TRANSPORTE DE ENERGÍA

FIGURA 11.1
FIGURA 11.2

FUENTE: REE.
FIGURA 11.3

FUENTE: REE.
11.2. REDES GASISTAS.

REALIZACIONES EN 2016

Las inversiones materiales en el sector del gas natural en el ejercicio 2016 ascendieron a 686 millones de euros lo que supone un incremento del 38% sobre las inversiones del año anterior, rompiendo con la tendencia decreciente iniciada en 2010. Estos valores suponen la vuelta a niveles de inversión similares a los de la segunda mitad de la década de los noventa.

La red de transporte y distribución de gas natural alcanzó a finales de 2016 los 85.108 km de lo que supone un incremento del 1,52% con respecto a 2015.

A finales del año 2016, el Sistema Gasista contaba con un total de 11.369 km de gasoductos de transporte primario.

Durante el año 2016, en lo que respecta a infraestructuras gasistas sometidas a planificación vinculante, hay que destacar las siguientes infraestructuras que han obtenido el Acta de puesta en Marcha:

- **Ca’s Tresorer-Manacor-Felanítx.** Gasoducto recogido en la Planificación de los Sectores de Electricidad y Gas 2008-2016, en la tabla 4.24 «Nuevas infraestructuras de transporte primario para la atención de los mercados de su zona geográfica de influencia incluidas en el documento de Planificación 2008-2016». Esta infraestructura insular, cuyo titular es Redexis Infraestructuras, S.L.U, discurre por los términos municipales de Palma, Alcaida, Montuïri, Sant Joan, Vilafranca de Bonany, Manacor y Felaníx. Consta de dos tramos: el primero con una longitud de 45 km, un diámetro de 16” y una presión de diseño de 80 bar; y el segundo con una longitud de 14 km, un diámetro de 12” y una presión de diseño de 80 bar.

- **Villanueva del Arzobispo-Castellar.** Este gasoducto se recoge en la Planificación de los Sectores de Electricidad y Gas 2008-2016, en la tabla 4.25 «Nuevas infraestructuras de transporte secundario para la atención de los mercados de su zona geográfica de influencia incluidas en el documento de Planificación 2008-2016». Cuenta con una presión máxima de servicio de 59 bares, 14 km y un diámetro de 8”. El titular de esta instalación es Redexis Gas, S.A.

En resumen, a finales del año 2016 las principales infraestructuras gasistas integradas en la red básica de gas natural eran las siguientes:

- Las plantas de regasificación de Barcelona, Huelva, Cartagena, Bilbao, Sagunto y Mugarós. Disponían, a finales de 2015, de una capa-

CUADRO 11.12. INVERSIONES MATERIALES Y EVOLUCIÓN DE LA RED DE GASODUCTOS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversiones (millones de €)</td>
<td>1.453</td>
<td>1.084</td>
<td>1.616</td>
<td>1.148</td>
<td>690</td>
<td>561</td>
<td>497</td>
<td>686</td>
<td>38,03%</td>
</tr>
<tr>
<td>Km de red</td>
<td>71.077</td>
<td>74.273</td>
<td>76.108</td>
<td>79.041</td>
<td>81.188</td>
<td>81.806</td>
<td>83.830</td>
<td>85.108</td>
<td>1,52%</td>
</tr>
</tbody>
</table>

FUENTE: SEDIGAS.
cidad total de almacenamiento de 3.316.500 m³ de GNL y de una capacidad de emisión de 6.862.800 m³(n)/h, mismas capacidades que el año 2014.

- Red de gasoductos de transporte en los siguientes ejes principales:
 - Eje Central: Huelva-Córdoba-Madrid-Burgos-Cantabria-Pais Vasco (con el Huelva-Sevilla-Córdoba-Madrid duplicado)
 - Eje Occidental: Almendralejo-Cáceres-Salamanca-Zamora-León-Oviedo.
 - Eje Occidental hispano-portugués: Córdoba-Badajoz-Portugal (Campo Mayor-Leiria-Braga) -Tuy-Pontevedra-A Coruña-Oviedo.
 - Eje Transversal: Alcázar de San Juan-Villarrobledo-Albacete-Montesa
 - Conexión a Medgaz: Almería-Lorca-Chinchilla

CUADRO 11.13. EVOLUCIÓN DE LA CAPACIDAD DE REGASIFICACIÓN EN EL SISTEMA ESPAÑOL

<table>
<thead>
<tr>
<th>NOMINAL Unidad: m³(n)/h</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>%16/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARCELONA</td>
<td>1.950.000</td>
<td>1.950.000</td>
<td>1.950.000</td>
<td>1.950.000</td>
<td>1.950.000</td>
<td>1.950.000</td>
<td>1.950.000</td>
<td>0,00%</td>
</tr>
<tr>
<td>CARTAGENA</td>
<td>1.350.000</td>
<td>1.350.000</td>
<td>1.350.000</td>
<td>1.350.000</td>
<td>1.350.000</td>
<td>1.350.000</td>
<td>1.350.000</td>
<td>0,00%</td>
</tr>
<tr>
<td>HUELVA</td>
<td>1.350.000</td>
<td>1.350.000</td>
<td>1.350.000</td>
<td>1.350.000</td>
<td>1.350.000</td>
<td>1.350.000</td>
<td>1.350.000</td>
<td>0,00%</td>
</tr>
<tr>
<td>BILBAO</td>
<td>800.000</td>
<td>800.000</td>
<td>800.000</td>
<td>800.000</td>
<td>800.000</td>
<td>800.000</td>
<td>800.000</td>
<td>0,00%</td>
</tr>
<tr>
<td>SAGUNTO</td>
<td>1.000.000</td>
<td>1.000.000</td>
<td>1.000.000</td>
<td>1.000.000</td>
<td>1.000.000</td>
<td>1.000.000</td>
<td>1.000.000</td>
<td>0,00%</td>
</tr>
<tr>
<td>REGANOSA</td>
<td>413.000</td>
<td>413.000</td>
<td>413.000</td>
<td>413.000</td>
<td>413.000</td>
<td>413.000</td>
<td>413.000</td>
<td>0,00%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6.863.000</td>
<td>6.863.000</td>
<td>6.863.000</td>
<td>6.863.000</td>
<td>6.863.000</td>
<td>6.863.000</td>
<td>6.863.000</td>
<td>0,00%</td>
</tr>
</tbody>
</table>

FUENTE: ENAGAS.

CUADRO 11.14.- EVOLUCIÓN DE LA CAPACIDAD DE ALMACENAMIENTO GNL EN EL SISTEMA ESPAÑOL

<table>
<thead>
<tr>
<th>NOMINAL Unidad: m³</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>%16/15</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARCELONA</td>
<td>540.000</td>
<td>690.000</td>
<td>840.000</td>
<td>760.000 (*)</td>
<td>760.000</td>
<td>760.000</td>
<td>760.000</td>
<td>0,00%</td>
</tr>
<tr>
<td>CARTAGENA</td>
<td>437.000</td>
<td>587.000</td>
<td>587.000</td>
<td>587.000</td>
<td>587.000</td>
<td>587.000</td>
<td>587.000</td>
<td>0,00%</td>
</tr>
<tr>
<td>HUELVA</td>
<td>460.000</td>
<td>619.500</td>
<td>619.500</td>
<td>619.500</td>
<td>619.500</td>
<td>619.500</td>
<td>619.500</td>
<td>0,00%</td>
</tr>
<tr>
<td>BILBAO</td>
<td>300.000</td>
<td>300.000</td>
<td>300.000</td>
<td>300.000</td>
<td>450.000</td>
<td>450.000</td>
<td>450.000</td>
<td>0,00%</td>
</tr>
<tr>
<td>SAGUNTO</td>
<td>450.000</td>
<td>450.000</td>
<td>600.000</td>
<td>600.000</td>
<td>600.000</td>
<td>600.000</td>
<td>600.000</td>
<td>0,00%</td>
</tr>
<tr>
<td>REGANOSA</td>
<td>300.000</td>
<td>300.000</td>
<td>300.000</td>
<td>300.000</td>
<td>300.000</td>
<td>300.000</td>
<td>300.000</td>
<td>0,00%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.487.000</td>
<td>2.946.500</td>
<td>3.216.500</td>
<td>2.406.500</td>
<td>3.316.500</td>
<td>3.316.500</td>
<td>3.316.500</td>
<td>0,00%</td>
</tr>
</tbody>
</table>

(*) Cierre de dos tanques de 40.000 m³ cada uno.
FUENTE: ENAGAS.
- Conexiones internacionales bidireccionales:
 La conexión internacional con Portugal, se denomina VIP.PT.IBÉRICO (punto de interconexión virtual), y engloba las capacidades de los puntos de interconexión de Tuy y Badajoz.

Por su parte, la conexión internacional con Francia, se denomina VIP.FR.PIRINEOS (punto de interconexión virtual) y, engloba las capacidades de los puntos de interconexión de Larrau e Irún.

- Conexiones internacionales unidireccionales:

FIGURA 11.4. INFRAESTRUCTURAS CON ACTA PUESTA EN MARCHA

Año 2016

Infraestructuras con Acta Puesta en Marcha

(*) Pendiente tras RD-Ley 13/2012, disposición transitoria tercera

FUENTE: ENAGAS GTS.
La red de transportes de energía requiere las reservas requeridas por la normativa. De la obligación total, establecida en 92 días, la Corporación debe mantener, al menos, 42 días. Sin embargo, a petición de los operadores, CORES puede aumentar los días de cobertura sobre el mínimo de 42 días hasta llegar al 100% de la obligación, siempre que cuente con reservas suficientes para ello. En el mes de diciembre de 2016, se disponía de unas reservas equivalentes a 49,7 días de consumos. A continuación se indica la evolución de las reservas estratégicas propiedad de CORES en el periodo 2007-2017.

A continuación se muestra el mapa de las infraestructuras para el transporte y almacenamiento de productos petrolíferos.

11.4. PLANIFICACIÓN DE LAS INFRAESTRUCTURAS DE TRANSPORTE DE ENERGÍA

La planificación realiza una previsión de las necesidades energéticas futuras y de las actuaciones que es necesario llevar a cabo para asegurar la prestación del servicio. En particular, las infraestructuras de transporte de energía eléctrica que dan soporte a esta actividad requieren de un largo

CUADRO 11.15. EVOLUCIÓN DE LA CANTIDAD DE RESERVAS ESTRATÉGICAS (M3)

<table>
<thead>
<tr>
<th>Fecha</th>
<th>31/12/2007</th>
<th>31/12/2008</th>
<th>31/12/2009</th>
<th>31/12/2010</th>
<th>31/12/2011</th>
<th>31/12/2012</th>
<th>31/12/2013</th>
<th>31/12/2014</th>
<th>31/12/2015</th>
<th>31/12/2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasolinas</td>
<td>668.882</td>
<td>668.882</td>
<td>699.536</td>
<td>699.536</td>
<td>699.536</td>
<td>675.200</td>
<td>673.911</td>
<td>673.053</td>
<td>672.318</td>
<td>639.693</td>
</tr>
<tr>
<td>Querosenos</td>
<td>326.784</td>
<td>348.784</td>
<td>427.884</td>
<td>427.884</td>
<td>427.884</td>
<td>427.015</td>
<td>426.148</td>
<td>425.243</td>
<td>424.338</td>
<td>423.408</td>
</tr>
<tr>
<td>Fuelóleos</td>
<td>257.812</td>
<td>257.812</td>
<td>257.812</td>
<td>257.812</td>
<td>257.554</td>
<td>230.249</td>
<td>230.018</td>
<td>215.950</td>
<td>203.748</td>
<td>203.748</td>
</tr>
</tbody>
</table>

Nota: Existencias a las 24:00h del último día del año
Fuente: CORES.
En primer lugar, el principio de sostenibilidad económica del sistema eléctrico ha permitido revertir la acumulación anual de déficit y, en estos momentos, el sistema se encuentra en equilibrio o ligero superávit gracias a dicha reforma. Tal principio de sostenibilidad económica ha estado muy presente en todo el proceso de planificación donde, para cada nueva actuación estructural de la red de transporte, se ha realizado un análisis coste-beneficio que optimizará las inversiones a realizar.

En segundo lugar, otra de las características de la nueva planificación es el mayor compromi-
so logrado con la Unión Europea para impulsar un mercado interior de la energía, aumentando nuestro nivel de interconexión energética con Europa. Esto es relevante para disminuir precios e integrar nueva generación renovable.

Por último, la planificación toma en consideración los cambios ligados a los avances tecnológicos, la mayor facilidad de los consumidores para gestionar su demanda y la mayor competencia e información sobre precios. Estos avances conllevan nuevos retos de mayor electrificación de la economía y mayor eficiencia (menor intensidad energética) que la planificación debe satisfacer.

En la actualidad se encuentra en vigor el documento de «Planificación Energética. Plan de Desarrollo de la Red de Transporte de Energía Eléctrica 2015-2020», previsto en el artículo 4 de la Ley 24/2013, de 26 de diciembre, del Sector Eléctrico y aprobado mediante Acuerdo del Consejo de Ministros. La planificación está publicada en la página web del Ministerio de Energía, Turismo y Agenda Digital, en la siguiente dirección:

El Ministerio de Industria, Energía y Turismo (actual Ministerio de Energía, Turismo y Agenda Digital) elaboró esta planificación siguiendo un proceso riguroso, de gran complejidad, con participación de todos los agentes del sistema, contando con la colaboración de las Comunidades Autónomas y Ciudades de Ceuta y Melilla y del Operador del Sistema eléctrico, así como con la Comisión Nacional de los Mercados y la Competencia. Adicionalmente ha sido sometida al proceso de evaluación ambiental estratégica de acuerdo a la Ley 9/2006 de 28 de abril, sobre evaluación de los efectos de determinados planes y programas en el medio ambiente (actualmente Ley 21/2013, de 9 de diciembre, de evaluación ambiental).

La planificación 2015-2020 incluye previsiones sobre el comportamiento futuro de la demanda, los recursos necesarios para satisfacerla, la evolución de las condiciones del mercado para garantizar el suministro y los criterios de protección ambiental.

Las proyecciones del documento de planificación establecen que el consumo de energía final en España, es decir la energía que llega finalmente al consumidor, crecerá a una tasa media anual del 0,9 por ciento entre 2014 y 2020, alcanzando un total de 90.788 ktep en el último año del periodo. Esta tasa de crecimiento de la energía final es inferior a la de la energía primaria, aquella que se obtiene directamente de la naturaleza y no ha sido sometida a ningún proceso de conversión, que será del 1 por ciento en media anual.

Este moderado crecimiento de la demanda energética durante el ejercicio de planificación se co-
En términos de demanda en barras de central (en generación), el escenario superior del operador del sistema prevé una demanda eléctrica de 284,9 TWh en el sistema peninsular en 2020, lo que supone un 15,7 por ciento superior a la registrada en 2013, con una punta de potencia de 49.000 MW.

Asimismo, el documento de planificación prevé un cambio en el mix de generación, con una caída del peso del carbón, de los productos petrolíferos y del gas natural y un aumento del peso de las energías renovables, de acuerdo con los objetivos en materia de renovables para 2020.

El coste estimado de las actuaciones previstas en el horizonte 2015-2020 es de 4.554 M€, incluyendo 143 M€ correspondientes a Fondos FEDER, respetando esta cuantía el límite al volumen de inversión previsto en la planificación establecido en la normativa legal vigente (Real Decreto 1047/2013, de 27 de diciembre).

Por lo que respecta al cumplimiento de los objetivos de penetración de energías renovables para 2020 establecidos por la Directiva 2009/28/UE de Energías Renovables, el documento de planificación prevé una participación de las energías renovables del 20 por ciento sobre la energía final bruta y del 10 por ciento sobre el consumo energético del sector transporte.

En términos de demanda eléctrica final (en consumo), el documento de planificación prevé un crecimiento medio anual del 2 por ciento para el periodo 2014-2020, superior al crecimiento de la demanda de energía final y primaria.

Este singular comportamiento de la demanda eléctrica se debe a que muchas de las medidas de eficiencia energética se corresponden con medidas de electrificación, siendo destacables la paulatina conversión del transporte hacia el vehículo eléctrico o el transporte por ferrocarril.

En este anexo se incluyen, en particular, varios proyectos de interconexión con Francia necesa-
rios para alcanzar el objetivo de un 10 por ciento de interconexión eléctrica de los Estados miembros de la Unión Europea.

A pesar de la nueva interconexión Santa Llogaia-Baixas puesta en servicio en 2015 la necesidad de incrementar la capacidad de interconexión con el sistema europeo sigue siendo una prioridad para el sistema eléctrico español, como ha quedado refrendado en junio de 2015 con la creación de un grupo de alto nivel, integrado por la Comisión Europea, Francia, Portugal y España, para impulsar proyectos clave de infraestructuras energéticas en el suroeste de Europa.

Un aspecto importante de esta planificación es la relevancia que se le concede a las interconexiones entre sistemas, en concreto a los enlaces entre sistemas insulares y las conexiones entre la Península y los sistemas no peninsulares.

Estos proyectos suponen un gran reto tanto técnico como económico para el sistema y permitirán mejorar significativamente la garantía y seguridad de suministro en los sistemas aislados, su sostenibilidad medioambiental al permitir mayor integración de energías renovables, así como incrementar la competitividad del mercado eléctrico.

En esta línea, cabe destacar la puesta en servicio en los primeros meses de 2016 del segundo enlace a 132 kV entre las subestaciones de Santa Ponsa y Torrent, que refuerza aún más los subsistemas Mallorca-Menorca e Ibiza-Formentera.

Finalmente, los nuevos desarrollos de la red de transporte de electricidad previstos para el período 2015-2020 responden principalmente a las siguientes necesidades:

Sistema peninsular

- Desarrollo de la red de 400 kV y 220 kV para incrementar la seguridad y garantía de suministro y el desarrollo de la red de 220 kV para incrementar el apoyo a las redes de distribución.

- Alimentación de nuevos ejes ferroviarios del Tren de Alta Velocidad desde la red de transporte de 400 y 220 kV.

- Desarrollo de las redes de 400 kV y 220 kV que faciliten la integración de generación y, en particular, de generación de origen renovable.

Sistemas baleares

- Interconexiones entre sistemas que permiten aumentar la seguridad de suministro y reducir los costes de generación.

- Desarrollo de la red de 66 kV y 220 kV en Mallorca y de 132 kV en Ibiza para garantizar la seguridad de suministro.

Sistemas canarios

- Interconexiones entre sistemas con objeto de aumentar la seguridad de suministro y reducir los costes de generación.
FIGURA 11.6

La figura muestra un diagrama de la red de transporte de energía en España. Se destacan diferentes aspectos como la seguridad de suministro, la demanda industrial, el tren de alta velocidad, la interconexión y la evacuación de renovables. El diagrama incluye una planificación para los años 2015-2018 y un recuadro con leyendas que explican los colores utilizados en el diagrama.
• Actuaciones de red para la integración de las instalaciones eólicas y fotovoltaicas previstas.

• Nuevo eje de 132 kV en Lanzarote-Fuerteventura y refuerzo de las redes de 220 kV en Gran Canaria y Tenerife para garantizar el suministro de las principales áreas de demanda.

Sistema ceutí

• Integración con el sistema peninsular mediante una interconexión submarina.

A continuación, se muestra un mapa con el resumen de las principales actuaciones planificadas en la red de transporte en el horizonte 2015-2020. Para mayor detalle se puede consultar la información elaborada por el Operador del Sistema en forma de trípticos para cada Comunidad Autónoma en el link:

http://www.ree.es/es/actividades/gestor-de-la-red-y-transportista/planificacion-y-desarrollo-de-la-red
ANEXO ESTADÍSTICO Y METODOLOGÍA
ANEXO ESTADÍSTICO

TABLA A.1. EVOLUCIÓN DEL CONSUMO DE ENERGÍA FINAL EN ESPAÑA.

<table>
<thead>
<tr>
<th>AÑO</th>
<th>Carbón</th>
<th>Gases y Derivados del Carbón</th>
<th>P. Petrolíferos</th>
<th>Gas</th>
<th>Electricidad</th>
<th>Energías renovables y residuos</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.990</td>
<td>3.426</td>
<td>5,8%</td>
<td>673</td>
<td>1,4%</td>
<td>34.989</td>
<td>59,9%</td>
<td>4.603</td>
</tr>
<tr>
<td>1.991</td>
<td>3.742</td>
<td>5,7%</td>
<td>654</td>
<td>1,0%</td>
<td>41.372</td>
<td>63,0%</td>
<td>5.063</td>
</tr>
<tr>
<td>1.992</td>
<td>3.469</td>
<td>5,2%</td>
<td>653</td>
<td>1,0%</td>
<td>42.092</td>
<td>63,6%</td>
<td>5.425</td>
</tr>
<tr>
<td>1.993</td>
<td>2.635</td>
<td>4,1%</td>
<td>724</td>
<td>1,1%</td>
<td>41.421</td>
<td>63,8%</td>
<td>5.562</td>
</tr>
<tr>
<td>1.994</td>
<td>2.589</td>
<td>3,8%</td>
<td>490</td>
<td>0,7%</td>
<td>44.333</td>
<td>65,1%</td>
<td>5.606</td>
</tr>
<tr>
<td>1.995</td>
<td>2.334</td>
<td>3,1%</td>
<td>347</td>
<td>0,5%</td>
<td>46.723</td>
<td>65,3%</td>
<td>6.874</td>
</tr>
<tr>
<td>1.996</td>
<td>1.968</td>
<td>2,7%</td>
<td>355</td>
<td>0,5%</td>
<td>46.351</td>
<td>64,3%</td>
<td>7.440</td>
</tr>
<tr>
<td>1.997</td>
<td>1.984</td>
<td>2,6%</td>
<td>383</td>
<td>0,5%</td>
<td>48.668</td>
<td>65,8%</td>
<td>8.298</td>
</tr>
<tr>
<td>1.998</td>
<td>1.787</td>
<td>2,1%</td>
<td>379</td>
<td>0,5%</td>
<td>52.056</td>
<td>64,1%</td>
<td>9.236</td>
</tr>
<tr>
<td>1.999</td>
<td>1.702</td>
<td>2,0%</td>
<td>225</td>
<td>0,3%</td>
<td>52.587</td>
<td>63,1%</td>
<td>10.091</td>
</tr>
<tr>
<td>2.000</td>
<td>2.723</td>
<td>4,5%</td>
<td>236</td>
<td>0,3%</td>
<td>54.993</td>
<td>64,7%</td>
<td>12.377</td>
</tr>
<tr>
<td>2.001</td>
<td>1.915</td>
<td>2,3%</td>
<td>361</td>
<td>0,4%</td>
<td>56.611</td>
<td>60,6%</td>
<td>13.511</td>
</tr>
<tr>
<td>2.002</td>
<td>1.924</td>
<td>2,0%</td>
<td>350</td>
<td>0,4%</td>
<td>56.656</td>
<td>60,0%</td>
<td>14.472</td>
</tr>
<tr>
<td>2.003</td>
<td>1.930</td>
<td>1,9%</td>
<td>337</td>
<td>0,3%</td>
<td>59.488</td>
<td>59,3%</td>
<td>15.824</td>
</tr>
<tr>
<td>2.004</td>
<td>1.931</td>
<td>1,9%</td>
<td>346</td>
<td>0,3%</td>
<td>60.527</td>
<td>58,7%</td>
<td>16.847</td>
</tr>
<tr>
<td>2.005</td>
<td>1.833</td>
<td>1,7%</td>
<td>284</td>
<td>0,3%</td>
<td>61.071</td>
<td>57,6%</td>
<td>18.472</td>
</tr>
<tr>
<td>2.006</td>
<td>1.768</td>
<td>1,7%</td>
<td>271</td>
<td>0,3%</td>
<td>60.483</td>
<td>58,5%</td>
<td>15.635</td>
</tr>
<tr>
<td>2.007</td>
<td>1.902</td>
<td>1,8%</td>
<td>291</td>
<td>0,3%</td>
<td>61.708</td>
<td>58,2%</td>
<td>16.222</td>
</tr>
<tr>
<td>2.008</td>
<td>1.737</td>
<td>1,7%</td>
<td>283</td>
<td>0,3%</td>
<td>58.727</td>
<td>57,5%</td>
<td>15.112</td>
</tr>
<tr>
<td>2.009</td>
<td>1.197</td>
<td>1,0%</td>
<td>214</td>
<td>0,3%</td>
<td>54.437</td>
<td>57,3%</td>
<td>13.248</td>
</tr>
<tr>
<td>2.010</td>
<td>1.238</td>
<td>1,2%</td>
<td>265</td>
<td>0,3%</td>
<td>53.471</td>
<td>55,4%</td>
<td>14.848</td>
</tr>
<tr>
<td>2.011</td>
<td>1.609</td>
<td>1,7%</td>
<td>306</td>
<td>0,3%</td>
<td>50.219</td>
<td>53,7%</td>
<td>14.486</td>
</tr>
<tr>
<td>2.012</td>
<td>1.223</td>
<td>1,4%</td>
<td>274</td>
<td>0,3%</td>
<td>45.542</td>
<td>51,2%</td>
<td>14.987</td>
</tr>
<tr>
<td>2.013</td>
<td>1.523</td>
<td>1,8%</td>
<td>220</td>
<td>0,3%</td>
<td>42.603</td>
<td>50,8%</td>
<td>15.254</td>
</tr>
<tr>
<td>2.014</td>
<td>1.143</td>
<td>1,4%</td>
<td>224</td>
<td>0,3%</td>
<td>42.264</td>
<td>50,9%</td>
<td>14.778</td>
</tr>
<tr>
<td>2.015</td>
<td>1.276</td>
<td>1,6%</td>
<td>239</td>
<td>0,3%</td>
<td>40.323</td>
<td>50,2%</td>
<td>13.218</td>
</tr>
<tr>
<td>2.016</td>
<td>1.100</td>
<td>1,3%</td>
<td>240</td>
<td>0,3%</td>
<td>41.166</td>
<td>50,6%</td>
<td>13.446</td>
</tr>
</tbody>
</table>

FUENTE: SEE.

FIGURA A.1. EVOLUCIÓN DEL CONSUMO DE ENERGÍA FINAL

ANEXO ESTADÍSTICO Y METODOLOGÍA
ANEXO ESTADÍSTICO Y METODOLOGÍA

TABLA A.2. EVOLUCIÓN DEL CONSUMO DE ENERGÍA PRIMARIA EN ESPAÑA

<table>
<thead>
<tr>
<th>Año</th>
<th>Carbón</th>
<th>Petróleo</th>
<th>Gas natural</th>
<th>Nuclear</th>
<th>Hidráulica</th>
<th>Biomasa, biocarb. y residuos renovables</th>
<th>Residuos no renovables</th>
<th>Saldo(1)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>19.112.4</td>
<td>20.2%</td>
<td>51.473,0</td>
<td>52.4%</td>
<td>9.470,6</td>
<td>5.1%</td>
<td>11.412,6</td>
<td>14.9%</td>
<td>2.959,4</td>
</tr>
<tr>
<td>1991</td>
<td>19.599,0</td>
<td>21.8%</td>
<td>43.440,0</td>
<td>48,6%</td>
<td>8.378,5</td>
<td>5.6%</td>
<td>14.476,0</td>
<td>15.8%</td>
<td>2.212,1</td>
</tr>
<tr>
<td>1992</td>
<td>20.614,4</td>
<td>21.8%</td>
<td>47.485,8</td>
<td>50.8%</td>
<td>8.573,8</td>
<td>5.6%</td>
<td>15.577,1</td>
<td>15.6%</td>
<td>1.626,8</td>
</tr>
<tr>
<td>1993</td>
<td>18.574,2</td>
<td>20.4%</td>
<td>45.590,0</td>
<td>52.6%</td>
<td>8.742,0</td>
<td>5.4%</td>
<td>18.609,6</td>
<td>16.2%</td>
<td>2.100,1</td>
</tr>
<tr>
<td>1994</td>
<td>18.921,7</td>
<td>19.9%</td>
<td>49.447,5</td>
<td>54.7%</td>
<td>8.996,6</td>
<td>5.6%</td>
<td>19.916,4</td>
<td>18.5%</td>
<td>1.972,3</td>
</tr>
<tr>
<td>1995</td>
<td>18.692,2</td>
<td>18.5%</td>
<td>55.885,0</td>
<td>57.8%</td>
<td>7.720,8</td>
<td>7.1%</td>
<td>14.414,9</td>
<td>14.1%</td>
<td>1.789,4</td>
</tr>
<tr>
<td>1996</td>
<td>16.071,3</td>
<td>15.8%</td>
<td>54.618,2</td>
<td>57.6%</td>
<td>6.849,6</td>
<td>6.1%</td>
<td>14.959,0</td>
<td>14.5%</td>
<td>1.612,6</td>
</tr>
<tr>
<td>1997</td>
<td>15.576,4</td>
<td>15.0%</td>
<td>52.756,1</td>
<td>55.2%</td>
<td>6.706,0</td>
<td>6.7%</td>
<td>15.244,9</td>
<td>14.7%</td>
<td>1.504,4</td>
</tr>
<tr>
<td>1998</td>
<td>14.054,5</td>
<td>15.4%</td>
<td>52.845,5</td>
<td>53.8%</td>
<td>6.166,8</td>
<td>6.1%</td>
<td>13.573,9</td>
<td>13.6%</td>
<td>1.397,4</td>
</tr>
<tr>
<td>1999</td>
<td>13.503,2</td>
<td>16.5%</td>
<td>63.828,6</td>
<td>57.9%</td>
<td>6.037,2</td>
<td>6.0%</td>
<td>15.277,2</td>
<td>15.0%</td>
<td>1.278,2</td>
</tr>
<tr>
<td>2000</td>
<td>15.765,4</td>
<td>16.5%</td>
<td>57.375,3</td>
<td>53.4%</td>
<td>8.419,8</td>
<td>8.5%</td>
<td>11.876,3</td>
<td>11.2%</td>
<td>1.127,7</td>
</tr>
<tr>
<td>2001</td>
<td>12.722,1</td>
<td>16.5%</td>
<td>50.108,0</td>
<td>50.4%</td>
<td>7.131,6</td>
<td>7.2%</td>
<td>15.149,4</td>
<td>14.9%</td>
<td>1.278,2</td>
</tr>
<tr>
<td>2002</td>
<td>12.895,0</td>
<td>16.4%</td>
<td>54.664,6</td>
<td>53.6%</td>
<td>6.966,6</td>
<td>6.9%</td>
<td>14.452,6</td>
<td>14.2%</td>
<td>1.197,4</td>
</tr>
<tr>
<td>2003</td>
<td>12.070,6</td>
<td>16.4%</td>
<td>54.637,6</td>
<td>53.8%</td>
<td>6.570,8</td>
<td>6.5%</td>
<td>13.665,3</td>
<td>13.4%</td>
<td>1.157,3</td>
</tr>
<tr>
<td>2004</td>
<td>11.348,0</td>
<td>15.9%</td>
<td>51.310,0</td>
<td>50.3%</td>
<td>6.248,6</td>
<td>6.2%</td>
<td>13.027,9</td>
<td>12.9%</td>
<td>1.077,1</td>
</tr>
<tr>
<td>2005</td>
<td>10.930,4</td>
<td>15.8%</td>
<td>49.990,0</td>
<td>50.0%</td>
<td>5.999,0</td>
<td>5.9%</td>
<td>12.369,4</td>
<td>12.3%</td>
<td>1.017,0</td>
</tr>
<tr>
<td>2006</td>
<td>10.442,0</td>
<td>15.7%</td>
<td>45.952,8</td>
<td>49.9%</td>
<td>5.742,0</td>
<td>5.7%</td>
<td>12.050,2</td>
<td>12.1%</td>
<td>0.977,0</td>
</tr>
</tbody>
</table>

FIGURA A.2. EVOLUCIÓN DEL CONSUMO DE ENERGÍA PRIMARIA

(1) Valor positivo: saldo importador; valor negativo: saldo exportador.

FUENTE: SEE.

LA ENERGÍA EN ESPAÑA 2016
ANEXO ESTADÍSTICO Y METODOLOGÍA

TABLA A.3. PRODUCCIÓN INTERIOR DE ENERGÍA PRIMARIA (Ktep)

<table>
<thead>
<tr>
<th>Año</th>
<th>Carbón</th>
<th>Petróleo</th>
<th>Gas Natural</th>
<th>Nuclear</th>
<th>Hidráulica</th>
<th>Eólica, solar y geoterm.</th>
<th>Biomasa, biocarbur. y residuos</th>
<th>TOTAL</th>
<th>Tasa de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>2.648</td>
<td>102</td>
<td>45</td>
<td>15.042</td>
<td>2.631</td>
<td>5.061</td>
<td>6.485</td>
<td>32.014</td>
<td>-7,1%</td>
</tr>
<tr>
<td>2013</td>
<td>1.762</td>
<td>375</td>
<td>50</td>
<td>14.783</td>
<td>3.370</td>
<td>7.632</td>
<td>6.363</td>
<td>34.136</td>
<td>1,8%</td>
</tr>
<tr>
<td>2014</td>
<td>1.628</td>
<td>311</td>
<td>21</td>
<td>14.934</td>
<td>3.369</td>
<td>7.599</td>
<td>6.668</td>
<td>34.529</td>
<td>1,2%</td>
</tr>
<tr>
<td>2015</td>
<td>1.246</td>
<td>236</td>
<td>54</td>
<td>14.934</td>
<td>2.397</td>
<td>7.476</td>
<td>7.295</td>
<td>33.637</td>
<td>-2,6%</td>
</tr>
<tr>
<td>2016</td>
<td>686</td>
<td>144</td>
<td>48</td>
<td>15.260</td>
<td>3.130</td>
<td>7.394</td>
<td>6.241</td>
<td>32.902</td>
<td>-2,2%</td>
</tr>
</tbody>
</table>

FUENTE: SEE

TABLA A.4. PRODUCCIÓN INTERIOR DE CARBÓN (MILES DE TONELADAS)

<table>
<thead>
<tr>
<th>Año</th>
<th>Antracita</th>
<th>Hulla</th>
<th>Lignito Negro</th>
<th>Lignito Pardo</th>
<th>TOTAL</th>
<th>Tasa de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>3.209</td>
<td>2.777</td>
<td>2.444</td>
<td>0</td>
<td>8.430</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>2.487</td>
<td>1.775</td>
<td>2.359</td>
<td>0</td>
<td>6.621</td>
<td>-21,5%</td>
</tr>
<tr>
<td>2012</td>
<td>2.258</td>
<td>1.652</td>
<td>2.271</td>
<td>0</td>
<td>6.218</td>
<td>-6,6%</td>
</tr>
<tr>
<td>2013</td>
<td>762</td>
<td>1.780</td>
<td>1.816</td>
<td>0</td>
<td>5.368</td>
<td>-29,3%</td>
</tr>
<tr>
<td>2014</td>
<td>1.338</td>
<td>1.331</td>
<td>1.230</td>
<td>0</td>
<td>4.369</td>
<td>-10,7%</td>
</tr>
<tr>
<td>2015</td>
<td>763</td>
<td>984</td>
<td>1.317</td>
<td>0</td>
<td>3.064</td>
<td>-21,4%</td>
</tr>
<tr>
<td>2016</td>
<td>701</td>
<td>310</td>
<td>730</td>
<td>0</td>
<td>1.742</td>
<td>-43,2%</td>
</tr>
</tbody>
</table>

FUENTE: SEE

TABLA A.5. PRODUCCIÓN INTERIOR DE CARBÓN (KTEP)

<table>
<thead>
<tr>
<th>Año</th>
<th>Antracita</th>
<th>Hulla</th>
<th>Lignito Negro</th>
<th>Lignito Pardo</th>
<th>TOTAL</th>
<th>Tasa de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>1.396</td>
<td>1.134</td>
<td>766</td>
<td>0</td>
<td>3.296</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>1.333</td>
<td>762</td>
<td>753</td>
<td>0</td>
<td>2.648</td>
<td>-19,6%</td>
</tr>
<tr>
<td>2012</td>
<td>1.016</td>
<td>697</td>
<td>747</td>
<td>0</td>
<td>2.460</td>
<td>-7,1%</td>
</tr>
<tr>
<td>2013</td>
<td>345</td>
<td>837</td>
<td>581</td>
<td>0</td>
<td>1.762</td>
<td>-28,4%</td>
</tr>
<tr>
<td>2014</td>
<td>619</td>
<td>604</td>
<td>405</td>
<td>0</td>
<td>1.628</td>
<td>-7,6%</td>
</tr>
<tr>
<td>2015</td>
<td>510</td>
<td>271</td>
<td>421</td>
<td>0</td>
<td>1.202</td>
<td>-26,3%</td>
</tr>
<tr>
<td>2016</td>
<td>319</td>
<td>133</td>
<td>233</td>
<td>0</td>
<td>686</td>
<td>-43,0%</td>
</tr>
</tbody>
</table>

FUENTE: SEE

TABLA A.6. PROCEDENCIA DEL GAS NATURAL IMPORTADO EN ESPAÑA (GWh)

<table>
<thead>
<tr>
<th>Año</th>
<th>África</th>
<th>Europa</th>
<th>Oriente Medio</th>
<th>América</th>
<th>Resto</th>
<th>Total</th>
<th>Tasa de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>121.473</td>
<td>5.468</td>
<td>75.493</td>
<td>28.592</td>
<td>33.766</td>
<td>59.075</td>
<td>3.445</td>
</tr>
<tr>
<td>2011</td>
<td>135.805</td>
<td>870</td>
<td>70.698</td>
<td>23.332</td>
<td>29.423</td>
<td>46.618</td>
<td>1.725</td>
</tr>
<tr>
<td>2012</td>
<td>150.190</td>
<td>0</td>
<td>54.842</td>
<td>843</td>
<td>40.769</td>
<td>40.962</td>
<td>0</td>
</tr>
<tr>
<td>2013</td>
<td>98.404</td>
<td>0</td>
<td>33.542</td>
<td>423</td>
<td>11.282</td>
<td>37.053</td>
<td>1.749</td>
</tr>
<tr>
<td>2014</td>
<td>117.135</td>
<td>0</td>
<td>28.529</td>
<td>0</td>
<td>12.650</td>
<td>31.521</td>
<td>1.649</td>
</tr>
<tr>
<td>2015</td>
<td>119.578</td>
<td>0</td>
<td>42.201</td>
<td>0</td>
<td>8.004</td>
<td>14.739</td>
<td>964</td>
</tr>
<tr>
<td>2016</td>
<td>109.126</td>
<td>0</td>
<td>52.765</td>
<td>0</td>
<td>8.667</td>
<td>28.943</td>
<td>0</td>
</tr>
</tbody>
</table>

FUENTE: SEE
TABLA A.7. PROCEDENCIA DEL PETRÓLEO CRUADO IMPORTADO EN ESPAÑA (MILES DE TONELADAS)

<table>
<thead>
<tr>
<th>Año</th>
<th>Oriente Medio</th>
<th>África</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arabia Saudí</td>
<td>Irán</td>
</tr>
<tr>
<td>2011</td>
<td>7.661</td>
<td>7.493</td>
</tr>
<tr>
<td>2012</td>
<td>7.936</td>
<td>1.103</td>
</tr>
<tr>
<td>2013</td>
<td>8.140</td>
<td>0</td>
</tr>
<tr>
<td>2014</td>
<td>7.241</td>
<td>0</td>
</tr>
<tr>
<td>2015</td>
<td>6.812</td>
<td>2.159</td>
</tr>
<tr>
<td>2016</td>
<td>6.588</td>
<td>2.513</td>
</tr>
</tbody>
</table>

FUENTE: SEE.

TABLA A.8. CONSUMO FINAL DE PRODUCTOS PETROLÍFEROS (KTEP)

<table>
<thead>
<tr>
<th>Año</th>
<th>Gasolinás</th>
<th>Querosenos</th>
<th>Gasóleos</th>
<th>GLP</th>
<th>Naftas</th>
<th>CO2 de petróleo</th>
<th>Otros</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>5.462</td>
<td>-7.0%</td>
<td>5.388</td>
<td>29.988</td>
<td>2.006</td>
<td>2.246</td>
<td>3.015</td>
<td>5.066</td>
</tr>
<tr>
<td>2011</td>
<td>5.080</td>
<td>-6.75%</td>
<td>5.746</td>
<td>27.737</td>
<td>1.798</td>
<td>2.125</td>
<td>2.726</td>
<td>4.907</td>
</tr>
<tr>
<td>2012</td>
<td>4.734</td>
<td>-5.7%</td>
<td>5.420</td>
<td>25.473</td>
<td>1.742</td>
<td>1.485</td>
<td>2.095</td>
<td>4.594</td>
</tr>
<tr>
<td>2013</td>
<td>4.313</td>
<td>-4.7%</td>
<td>5.268</td>
<td>25.905</td>
<td>1.728</td>
<td>1.575</td>
<td>1.269</td>
<td>3.348</td>
</tr>
<tr>
<td>2014</td>
<td>4.460</td>
<td>-1.5%</td>
<td>5.407</td>
<td>25.708</td>
<td>1.827</td>
<td>1.544</td>
<td>2.090</td>
<td>2.249</td>
</tr>
<tr>
<td>2015</td>
<td>4.470</td>
<td>0.9%</td>
<td>5.684</td>
<td>27.101</td>
<td>1.92</td>
<td>2.059</td>
<td>1.531</td>
<td>1.181</td>
</tr>
<tr>
<td>2016</td>
<td>4.622</td>
<td>3.4%</td>
<td>6.053</td>
<td>27.441</td>
<td>2.289</td>
<td>1.291</td>
<td>1.007</td>
<td>2.440</td>
</tr>
</tbody>
</table>

FUENTE: SEE.
Anexo Estadístico y Metodología

<table>
<thead>
<tr>
<th></th>
<th>Reino Unido</th>
<th>Rusia</th>
<th>Otros</th>
<th>Total</th>
<th>Tasa de variac.</th>
<th>México</th>
<th>Venezuela</th>
<th>Otros</th>
<th>Total</th>
<th>Tasa de variac.</th>
<th>Resto</th>
<th>Total Miles de toneladas</th>
<th>Tasa de variac.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>405</td>
<td>6.585</td>
<td>1.704</td>
<td>8.694</td>
<td></td>
<td>6.125</td>
<td>4.195</td>
<td>2.161</td>
<td>8.795</td>
<td>32.2%</td>
<td>775</td>
<td>52.461</td>
<td>-0.6%</td>
</tr>
<tr>
<td>2011</td>
<td>159</td>
<td>7.977</td>
<td>845</td>
<td>8.821</td>
<td>3.3%</td>
<td>6.478</td>
<td>2.579</td>
<td>4.005</td>
<td>12.672</td>
<td>41.2%</td>
<td>759</td>
<td>58.807</td>
<td>12.8%</td>
</tr>
<tr>
<td>2012</td>
<td>0</td>
<td>8.178</td>
<td>651</td>
<td>8.830</td>
<td>-1.9%</td>
<td>8.757</td>
<td>2.799</td>
<td>4.005</td>
<td>15.563</td>
<td>75.4%</td>
<td>1.279</td>
<td>7.977</td>
<td>57.9%</td>
</tr>
<tr>
<td>2013</td>
<td>399</td>
<td>8.127</td>
<td>1.574</td>
<td>10.100</td>
<td>14.1%</td>
<td>8.841</td>
<td>2.371</td>
<td>4.234</td>
<td>15.546</td>
<td>5.1%</td>
<td>2.909</td>
<td>8.971</td>
<td>-1.6%</td>
</tr>
<tr>
<td>2014</td>
<td>1.357</td>
<td>7.073</td>
<td>2.751</td>
<td>11.823</td>
<td>10.7%</td>
<td>8.558</td>
<td>2.917</td>
<td>5.430</td>
<td>16.965</td>
<td>8.7%</td>
<td>688</td>
<td>9.054</td>
<td>2.0%</td>
</tr>
<tr>
<td>2015</td>
<td>1.794</td>
<td>7.933</td>
<td>2.935</td>
<td>12.662</td>
<td>13.2%</td>
<td>8.883</td>
<td>3.190</td>
<td>5.775</td>
<td>17.654</td>
<td>4.4%</td>
<td>1.877</td>
<td>64.628</td>
<td>9.4%</td>
</tr>
<tr>
<td>2016</td>
<td>1.792</td>
<td>5.073</td>
<td>3.009</td>
<td>9.874</td>
<td>-22.0%</td>
<td>5.234</td>
<td>1.120</td>
<td>5.921</td>
<td>16.275</td>
<td>-7.8%</td>
<td>6.546</td>
<td>64.711</td>
<td>-0.7%</td>
</tr>
</tbody>
</table>

FUENTE: SEE.